Krantz, Steven G. A geometric approach to the theory of normal families. (English) Zbl 1487.32014 Complex Anal. Oper. Theory 16, No. 2, Paper No. 19, 8 p. (2022). MSC: 32A19 32H02 32H99 30H05 PDF BibTeX XML Cite \textit{S. G. Krantz}, Complex Anal. Oper. Theory 16, No. 2, Paper No. 19, 8 p. (2022; Zbl 1487.32014) Full Text: DOI OpenURL
Alikhani-Koopaei, Aliasghar Equi-Baire one family of functions on metric spaces: a generalization of equi-continuity; and some applications. (English) Zbl 1439.26021 Topology Appl. 277, Article ID 107170, 10 p. (2020). MSC: 26A21 26A18 37C25 PDF BibTeX XML Cite \textit{A. Alikhani-Koopaei}, Topology Appl. 277, Article ID 107170, 10 p. (2020; Zbl 1439.26021) Full Text: DOI OpenURL
Holá, Ľubica; Holý, Dušan Compactness in function spaces. (English) Zbl 1427.54029 Topology Appl. 262, 20-29 (2019). Reviewer: Anna Di Concilio (Salerno) MSC: 54C35 54C08 PDF BibTeX XML Cite \textit{Ľ. Holá} and \textit{D. Holý}, Topology Appl. 262, 20--29 (2019; Zbl 1427.54029) Full Text: DOI arXiv OpenURL
Duits, R.; Meesters, S. P. L.; Mirebeau, J.-M.; Portegies, J. M. Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis. (English) Zbl 1398.65135 J. Math. Imaging Vis. 60, No. 6, 816-848 (2018). MSC: 65K10 PDF BibTeX XML Cite \textit{R. Duits} et al., J. Math. Imaging Vis. 60, No. 6, 816--848 (2018; Zbl 1398.65135) Full Text: DOI arXiv OpenURL
Wright, Paul Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. (English) Zbl 1353.37077 Discrete Contin. Dyn. Syst. 36, No. 7, 3993-4014 (2016). MSC: 37D50 37C45 37D35 PDF BibTeX XML Cite \textit{P. Wright}, Discrete Contin. Dyn. Syst. 36, No. 7, 3993--4014 (2016; Zbl 1353.37077) Full Text: DOI arXiv OpenURL
Karpenko, Daria; Van Gorder, Robert A.; Kandel, Abraham The Cauchy problem for complex fuzzy differential equations. (English) Zbl 1315.35227 Fuzzy Sets Syst. 245, 18-29 (2014). MSC: 35R13 PDF BibTeX XML Cite \textit{D. Karpenko} et al., Fuzzy Sets Syst. 245, 18--29 (2014; Zbl 1315.35227) Full Text: DOI OpenURL
Beardon, A. F.; Minda, D. Normal families: a geometric perspective. (English) Zbl 1307.30075 Comput. Methods Funct. Theory 14, No. 2-3, 331-355 (2014). MSC: 30D45 30F45 30C80 PDF BibTeX XML Cite \textit{A. F. Beardon} and \textit{D. Minda}, Comput. Methods Funct. Theory 14, No. 2--3, 331--355 (2014; Zbl 1307.30075) Full Text: DOI OpenURL