Bi, Lijuan; Cohl, Howard S.; Volkmer, Hans Expansion for a fundamental solution of Laplace’s equation in flat-ring cyclide coordinates. (English) Zbl 1497.35099 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022). MSC: 35J05 35A08 PDF BibTeX XML Cite \textit{L. Bi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022; Zbl 1497.35099) Full Text: DOI arXiv
Voicu, R. C.; Sandu, T. Analytical results regarding electrostatic resonances of surface phonon/plasmon polaritons: separation of variables with a twist. (English) Zbl 1404.78013 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2199, Article ID 20160796, 17 p. (2017). MSC: 78A30 PDF BibTeX XML Cite \textit{R. C. Voicu} and \textit{T. Sandu}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2199, Article ID 20160796, 17 p. (2017; Zbl 1404.78013) Full Text: DOI arXiv
Kalnins, Ernest G.; Miller, Willard jun.; Subag, Eyal Bôcher contractions of conformally superintegrable Laplace equations. (English) Zbl 1338.81228 SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 038, 31 p. (2016). MSC: 81R12 81R05 33C45 17B81 81Q10 35J05 81Q35 PDF BibTeX XML Cite \textit{E. G. Kalnins} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 038, 31 p. (2016; Zbl 1338.81228) Full Text: DOI arXiv
Cohl, H. S.; Volkmer, H. Separation of variables in an asymmetric cyclidic coordinate system. (English) Zbl 1286.35081 J. Math. Phys. 54, No. 6, 063513, 23 p. (2013). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{H. S. Cohl} and \textit{H. Volkmer}, J. Math. Phys. 54, No. 6, 063513, 23 p. (2013; Zbl 1286.35081) Full Text: DOI arXiv
Schöbel, Konrad P. Algebraic integrability conditions for Killing tensors on constant sectional curvature manifolds. (English) Zbl 1323.70078 J. Geom. Phys. 62, No. 5, 1013-1037 (2012). MSC: 70H06 70G45 53Z05 PDF BibTeX XML Cite \textit{K. P. Schöbel}, J. Geom. Phys. 62, No. 5, 1013--1037 (2012; Zbl 1323.70078) Full Text: DOI arXiv
Chanachowicz, Mark; Chanu, Claudia M.; McLenaghan, Raymond G. Invariant classification of the rotationally symmetric \(R\)-separable webs for the Laplace equation in Euclidean space. (English) Zbl 1153.81337 J. Math. Phys. 49, No. 1, 013511, 21 p. (2008). MSC: 35A30 35J05 53A60 PDF BibTeX XML Cite \textit{M. Chanachowicz} et al., J. Math. Phys. 49, No. 1, 013511, 21 p. (2008; Zbl 1153.81337) Full Text: DOI arXiv
Horwood, Joshua T.; McLenaghan, Raymond G.; Smirnov, Roman G. Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space. (English) Zbl 1088.37029 Commun. Math. Phys. 259, No. 3, 679-709 (2005). Reviewer: Mircea Puta (Timişoara) MSC: 37J35 81R12 70G45 70H06 PDF BibTeX XML Cite \textit{J. T. Horwood} et al., Commun. Math. Phys. 259, No. 3, 679--709 (2005; Zbl 1088.37029) Full Text: DOI arXiv
Kalnins, E. G.; Miller, Willard jun. The wave equation and separation of variables on the complex sphere \(S_ 4\). (English) Zbl 0492.35040 J. Math. Anal. Appl. 83, 449-469 (1981). MSC: 35L05 33C80 PDF BibTeX XML Cite \textit{E. G. Kalnins} and \textit{W. Miller jun.}, J. Math. Anal. Appl. 83, 449--469 (1981; Zbl 0492.35040) Full Text: DOI
Böhmer, Klaus Charakterisierung von linearen Differentialgleichungen durch Wachstumsbedingungen. I. (German) Zbl 0304.34002 Arch. Math. 26, 64-74 (1975). MSC: 34M99 34A30 33C05 PDF BibTeX XML Cite \textit{K. Böhmer}, Arch. Math. 26, 64--74 (1975; Zbl 0304.34002) Full Text: DOI
Hilb, E. Über Integraldarstellung willkürlicher Funktionen. (German) JFM 39.0405.01 Math. Ann. 66, 1-66 (1909); auch sep. als Habilitationsschrift Erlangen (1909). Reviewer: Hellinger, Dr. (Marburg) PDF BibTeX XML Cite \textit{E. Hilb}, Math. Ann. 66, 1--66 (1909; JFM 39.0405.01) Full Text: DOI EuDML