Ascione, Giacomo; Lőrinczi, József Potentials for non-local Schrödinger operators with zero eigenvalues. (English) Zbl 1497.35120 J. Differ. Equations 317, 264-364 (2022). MSC: 35J10 35R11 35P99 PDF BibTeX XML Cite \textit{G. Ascione} and \textit{J. Lőrinczi}, J. Differ. Equations 317, 264--364 (2022; Zbl 1497.35120) Full Text: DOI arXiv OpenURL
Choi, Ji Eun; Kim, Ahyun Multiplication formula and \((w, q)\)-alternating power sums of twisted \(q\)-Euler polynomials of the second kind. (English) Zbl 1499.11099 J. Appl. Math. Inform. 39, No. 3-4, 455-467 (2021). MSC: 11B68 11S40 11S80 PDF BibTeX XML Cite \textit{J. E. Choi} and \textit{A. Kim}, J. Appl. Math. Inform. 39, No. 3--4, 455--467 (2021; Zbl 1499.11099) Full Text: DOI OpenURL
Mondal, Saiful R.; Nisar, Kottakkaran Sooppy; Abdeljawad, Thabet Some subordination involving polynomials induced by lower triangular matrices. (English) Zbl 1486.30041 Adv. Difference Equ. 2020, Paper No. 538, 9 p. (2020). MSC: 30C45 40G05 26D05 26E60 PDF BibTeX XML Cite \textit{S. R. Mondal} et al., Adv. Difference Equ. 2020, Paper No. 538, 9 p. (2020; Zbl 1486.30041) Full Text: DOI OpenURL
Murty, M. Ram; Pathak, Siddhi Convolution of values of the Lerch zeta-function. (English) Zbl 1454.11165 J. Number Theory 217, 1-22 (2020). Reviewer: István Mező (Nanjing) MSC: 11M35 11M32 PDF BibTeX XML Cite \textit{M. R. Murty} and \textit{S. Pathak}, J. Number Theory 217, 1--22 (2020; Zbl 1454.11165) Full Text: DOI OpenURL
Yang, Gongrong A note on a formula of special values of Dirichlet \(L\)-functions. (English) Zbl 1496.11119 Liang, Zhibin (ed.) et al., The computational and theoretical aspects of elliptic curves. Based on the conferences on “Theoretical and computational aspects of the Birch and Swinnerton-Dyer conjecture”, Beijing, China, December 2014 and Bangalore, India, December 2016. Singapore: Springer. Math. Lect. Peking Univ., 81-87 (2019). MSC: 11M06 PDF BibTeX XML Cite \textit{G. Yang}, in: The computational and theoretical aspects of elliptic curves. Based on the conferences on ``Theoretical and computational aspects of the Birch and Swinnerton-Dyer conjecture'', Beijing, China, December 2014 and Bangalore, India, December 2016. Singapore: Springer. 81--87 (2019; Zbl 1496.11119) Full Text: DOI OpenURL
Lynott, Georgia M.; Andrew, Victoria; Abrahams, I. David; Simon, Michael J.; Parnell, William J.; Assier, Raphaël C. Acoustic scattering from a one-dimensional array; tail-end asymptotics for efficient evaluation of the quasi-periodic Green’s function. (English) Zbl 07222050 Wave Motion 89, 232-244 (2019). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{G. M. Lynott} et al., Wave Motion 89, 232--244 (2019; Zbl 07222050) Full Text: DOI OpenURL
Cai, Xing Shi; López, José L. A note on the asymptotic expansion of the Lerch’s transcendent. (English) Zbl 1439.11225 Integral Transforms Spec. Funct. 30, No. 10, 844-855 (2019). MSC: 11M35 PDF BibTeX XML Cite \textit{X. S. Cai} and \textit{J. L. López}, Integral Transforms Spec. Funct. 30, No. 10, 844--855 (2019; Zbl 1439.11225) Full Text: DOI arXiv OpenURL
Laurinčikas, Antanas “Almost” universality of the Lerch zeta-function. (English) Zbl 1434.11187 Math. Commun. 24, No. 1, 107-118 (2019). MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas}, Math. Commun. 24, No. 1, 107--118 (2019; Zbl 1434.11187) Full Text: Link OpenURL
Nadarajah, Saralees; Chan, Stephen Elementary expressions for moments of truncated negative binomial random variables. (English) Zbl 07416475 Commun. Stat., Theory Methods 47, No. 15, 3734-3743 (2018). MSC: 62-XX 62E99 PDF BibTeX XML Cite \textit{S. Nadarajah} and \textit{S. Chan}, Commun. Stat., Theory Methods 47, No. 15, 3734--3743 (2018; Zbl 07416475) Full Text: DOI OpenURL
Laurinčikas, Antanas; Mincevič, Asta Joint discrete universality for Lerch zeta-functions. (Russian. English summary) Zbl 1439.11228 Chebyshevskiĭ Sb. 19, No. 1(65), 138-151 (2018). MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas} and \textit{A. Mincevič}, Chebyshevskiĭ Sb. 19, No. 1(65), 138--151 (2018; Zbl 1439.11228) Full Text: DOI MNR OpenURL
Garunkštis, Ramūnas; Tamošiūnas, Rokas Symmetry of zeros of Lerch zeta-function for equal parameters. (English) Zbl 1429.11170 Lith. Math. J. 57, No. 4, 433-440 (2017). MSC: 11M35 11M26 PDF BibTeX XML Cite \textit{R. Garunkštis} and \textit{R. Tamošiūnas}, Lith. Math. J. 57, No. 4, 433--440 (2017; Zbl 1429.11170) Full Text: DOI arXiv OpenURL
Oswald, Nicola M. R. [Hurwitz, Adolf] An unpublished paper ‘Über einige durch unendliche Reihen definierte Funktionen eines complexen Argumentes’ by Adolf Hurwitz. (English) Zbl 1384.01020 Hist. Math. 44, No. 3, 252-279 (2017). MSC: 01A55 01A60 01A70 11-03 11M41 PDF BibTeX XML Cite \textit{N. M. R. Oswald}, Hist. Math. 44, No. 3, 252--279 (2017; Zbl 1384.01020) Full Text: DOI OpenURL
Saha, Biswajyoti An elementary approach to the meromorphic continuation of some classical Dirichlet series. (English) Zbl 1408.11086 Proc. Indian Acad. Sci., Math. Sci. 127, No. 2, 225-233 (2017). MSC: 11M06 11M35 PDF BibTeX XML Cite \textit{B. Saha}, Proc. Indian Acad. Sci., Math. Sci. 127, No. 2, 225--233 (2017; Zbl 1408.11086) Full Text: DOI OpenURL
Oswald, Nicola; Steuding, Jörn Aspects of zeta-function theory in the mathematical works of Adolf Hurwitz. (English) Zbl 1376.01009 Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer (ISBN 978-3-319-28202-2/hbk; 978-3-319-28203-9/ebook). 309-351 (2016). Reviewer: Reinhard Siegmund-Schultze (Kristiansand) MSC: 01A60 11-03 11M06 11M35 PDF BibTeX XML Cite \textit{N. Oswald} and \textit{J. Steuding}, in: From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 309--351 (2016; Zbl 1376.01009) Full Text: DOI arXiv OpenURL
Garunkštis, Ramũnas; Kalpokas, Justas Sum of the Lerch zeta-function over nontrivial zeros of the Dirichlet \(L\)-function. (English) Zbl 1407.11104 Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 141-153 (2016). MSC: 11M35 11M26 PDF BibTeX XML Cite \textit{R. Garunkštis} and \textit{J. Kalpokas}, in: From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 141--153 (2016; Zbl 1407.11104) Full Text: DOI OpenURL
Oswald, Nicola M. R.; Steuding, Jörn About the cover: Zeta-functions associated with quadratic forms in Adolf Hurwitz’s estate. (English) Zbl 1338.01053 Bull. Am. Math. Soc., New Ser. 53, No. 3, 477-481 (2016). MSC: 01A70 01A55 11-03 PDF BibTeX XML Cite \textit{N. M. R. Oswald} and \textit{J. Steuding}, Bull. Am. Math. Soc., New Ser. 53, No. 3, 477--481 (2016; Zbl 1338.01053) Full Text: DOI OpenURL
Lagarias, Jeffrey C.; Li, Wen-Ching Winnie The Lerch zeta function. III: Polylogarithms and special values. (English) Zbl 1412.11110 Res. Math. Sci. 3, Paper No. 2, 54 p. (2016). MSC: 11M35 33B30 PDF BibTeX XML Cite \textit{J. C. Lagarias} and \textit{W.-C. W. Li}, Res. Math. Sci. 3, Paper No. 2, 54 p. (2016; Zbl 1412.11110) Full Text: DOI arXiv OpenURL
Hu, Su; Kim, Min-Soo The \((S, \{2 \})\)-Iwasawa theory. (English) Zbl 1400.11141 J. Number Theory 158, 73-89 (2016). MSC: 11R23 11S40 11S80 PDF BibTeX XML Cite \textit{S. Hu} and \textit{M.-S. Kim}, J. Number Theory 158, 73--89 (2016; Zbl 1400.11141) Full Text: DOI arXiv OpenURL
Hirose, Minoru; Sato, Nobuo On the functional equation of the normalized Shintani \(L\)-function of several variables. (English) Zbl 1391.11104 Math. Z. 280, No. 3-4, 1085-1092 (2015). MSC: 11M32 11M35 PDF BibTeX XML Cite \textit{M. Hirose} and \textit{N. Sato}, Math. Z. 280, No. 3--4, 1085--1092 (2015; Zbl 1391.11104) Full Text: DOI arXiv OpenURL
Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. The Lerch transcendent from the point of view of Fourier analysis. (English) Zbl 1321.11093 J. Math. Anal. Appl. 431, No. 1, 186-201 (2015). MSC: 11M35 11B68 42A16 PDF BibTeX XML Cite \textit{L. M. Navas} et al., J. Math. Anal. Appl. 431, No. 1, 186--201 (2015; Zbl 1321.11093) Full Text: DOI OpenURL
Katsurada, Masanori Complete asymptotic expansions associated with Epstein zeta-functions. II. (English) Zbl 1322.11031 Ramanujan J. 36, No. 3, 403-437 (2015). Reviewer: Guram Gogishvili (Tbilisi) MSC: 11E45 11F11 11M35 PDF BibTeX XML Cite \textit{M. Katsurada}, Ramanujan J. 36, No. 3, 403--437 (2015; Zbl 1322.11031) Full Text: DOI OpenURL
Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. Some functional relations derived from the Lindelöf-Wirtinger expansion of the Lerch transcendent function. (English) Zbl 1315.41015 Math. Comput. 84, No. 292, 803-813 (2015). Reviewer: José L. Lopez (Pamplona) MSC: 41A60 11M35 42A10 PDF BibTeX XML Cite \textit{L. M. Navas} et al., Math. Comput. 84, No. 292, 803--813 (2015; Zbl 1315.41015) Full Text: DOI OpenURL
Mishou, Hidehiko Functional distribution for a collection of Lerch zeta functions. (English) Zbl 1317.11089 J. Math. Soc. Japan 66, No. 4, 1105-1126 (2014). Reviewer: Khristo N. Boyadzhiev (Ada) MSC: 11M35 11K38 PDF BibTeX XML Cite \textit{H. Mishou}, J. Math. Soc. Japan 66, No. 4, 1105--1126 (2014; Zbl 1317.11089) Full Text: DOI Euclid OpenURL
Laurinčikas, A.; Macaitienė, R. The joint universality of Dirichlet \(L\)-functions and Lerch zeta-functions. (English. Russian original) Zbl 1316.11078 Sib. Math. J. 55, No. 4, 645-657 (2014); translation from Sib. Mat. Zh. 55, No. 4, 790-805 (2014). Reviewer: Giovanni Coppola (Avellino) MSC: 11M06 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas} and \textit{R. Macaitienė}, Sib. Math. J. 55, No. 4, 645--657 (2014; Zbl 1316.11078); translation from Sib. Mat. Zh. 55, No. 4, 790--805 (2014) Full Text: DOI OpenURL
Gawronski, Wolfgang; Littlejohn, Lance L.; Neuschel, Thorsten Asymptotics of Stirling and Chebyshev-Stirling numbers of the second kind. (English) Zbl 1331.11018 Stud. Appl. Math. 133, No. 1, 1-17 (2014). MSC: 11B73 PDF BibTeX XML Cite \textit{W. Gawronski} et al., Stud. Appl. Math. 133, No. 1, 1--17 (2014; Zbl 1331.11018) Full Text: DOI arXiv OpenURL
Al-Shaqsi, K. Strong differential subordinations obtained with new integral operator defined by polylogarithm function. (English) Zbl 1290.30008 Int. J. Math. Math. Sci. 2014, Article ID 260198, 6 p. (2014). MSC: 30C45 PDF BibTeX XML Cite \textit{K. Al-Shaqsi}, Int. J. Math. Math. Sci. 2014, Article ID 260198, 6 p. (2014; Zbl 1290.30008) Full Text: DOI OpenURL
Choi, Junesang Remark on the Hurwitz-Lerch zeta function. (English) Zbl 1296.11114 Fixed Point Theory Appl. 2013, Paper No. 70, 10 p. (2013). Reviewer: Mehmet Cenkci (Antalya) MSC: 11M35 11M41 33B15 PDF BibTeX XML Cite \textit{J. Choi}, Fixed Point Theory Appl. 2013, Paper No. 70, 10 p. (2013; Zbl 1296.11114) Full Text: DOI OpenURL
Ali, Rosihan M.; Mondal, Saiful R.; Ravichandran, V. Zero-free approximants to derivatives of prestarlike functions. (English) Zbl 1288.30001 J. Inequal. Appl. 2013, Paper No. 401, 8 p. (2013). MSC: 30C45 33C05 40G05 41A10 PDF BibTeX XML Cite \textit{R. M. Ali} et al., J. Inequal. Appl. 2013, Paper No. 401, 8 p. (2013; Zbl 1288.30001) Full Text: DOI OpenURL
Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. Asymptotic behavior of the Lerch transcendent function. (English) Zbl 1280.30020 J. Approx. Theory 170, 21-31 (2013). MSC: 30E15 PDF BibTeX XML Cite \textit{L. M. Navas} et al., J. Approx. Theory 170, 21--31 (2013; Zbl 1280.30020) Full Text: DOI OpenURL
Gawronski, Wolfgang; Neuschel, Thorsten Euler-Frobenius numbers. (English) Zbl 1278.05236 Integral Transforms Spec. Funct. 24, No. 10, 817-830 (2013). MSC: 05D40 41A40 PDF BibTeX XML Cite \textit{W. Gawronski} and \textit{T. Neuschel}, Integral Transforms Spec. Funct. 24, No. 10, 817--830 (2013; Zbl 1278.05236) Full Text: DOI OpenURL
Laurinčikas, A. On universality of the Lerch zeta-function. (English. Russian original) Zbl 1297.11109 Proc. Steklov Inst. Math. 276, 167-175 (2012); translation from Tr. Mat. Inst. Steklova 276, 173-181 (2012). MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas}, Proc. Steklov Inst. Math. 276, 167--175 (2012; Zbl 1297.11109); translation from Tr. Mat. Inst. Steklova 276, 173--181 (2012) Full Text: DOI OpenURL
Knill, Oliver; Lesieutre, John Analytic continuation of Dirichlet series with almost periodic coefficients. (English) Zbl 1291.30018 Complex Anal. Oper. Theory 6, No. 1, 237-255 (2012). MSC: 30B40 11M41 30B50 33E20 PDF BibTeX XML Cite \textit{O. Knill} and \textit{J. Lesieutre}, Complex Anal. Oper. Theory 6, No. 1, 237--255 (2012; Zbl 1291.30018) Full Text: DOI arXiv OpenURL
Lagarias, Jeffrey C.; Li, Wen-Ching Winnie The Lerch zeta function. II: Analytic continuation. (English) Zbl 1253.11086 Forum Math. 24, No. 1, 49-84 (2012). MSC: 11M35 11M32 PDF BibTeX XML Cite \textit{J. C. Lagarias} and \textit{W.-C. W. Li}, Forum Math. 24, No. 1, 49--84 (2012; Zbl 1253.11086) Full Text: DOI arXiv OpenURL
Lagarias, Jeffrey C.; Li, Wen-Ching Winnie The Lerch zeta function. I: Zeta integrals. (English) Zbl 1253.11085 Forum Math. 24, No. 1, 1-48 (2012). MSC: 11M35 PDF BibTeX XML Cite \textit{J. C. Lagarias} and \textit{W.-C. W. Li}, Forum Math. 24, No. 1, 1--48 (2012; Zbl 1253.11085) Full Text: DOI arXiv OpenURL
Katayama, Koji Generalized gamma functions with characters. (English) Zbl 1226.11091 Int. J. Number Theory 6, No. 7, 1625-1657 (2010). Reviewer: Mehmet Cenkci (Antalya) MSC: 11M35 11R42 33B15 PDF BibTeX XML Cite \textit{K. Katayama}, Int. J. Number Theory 6, No. 7, 1625--1657 (2010; Zbl 1226.11091) Full Text: DOI OpenURL
Cenkci, Mehmet An explicit formula for generalized potential polynomials and its applications. (English) Zbl 1213.11046 Discrete Math. 309, No. 6, 1498-1510 (2009). MSC: 11B68 11B73 PDF BibTeX XML Cite \textit{M. Cenkci}, Discrete Math. 309, No. 6, 1498--1510 (2009; Zbl 1213.11046) Full Text: DOI OpenURL
Garbaliauskienė, V.; Genienė, D.; Laurinčikas, A. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. I. (English) Zbl 1187.11028 Lith. Math. J. 47, No. 2, 135-146 (2007) and Liet. Mat. Rink. 47, No. 2, 163-176 (2007). Reviewer: Renata Macaitiene (Vilnius) MSC: 11M35 PDF BibTeX XML Cite \textit{V. Garbaliauskienė} et al., Lith. Math. J. 47, No. 2, 135--146 (2007; Zbl 1187.11028) Full Text: DOI OpenURL
Habsieger, Laurent Explicit approximate functional equations for various classes of Dirichlet series. (English) Zbl 1159.11027 Ramanujan J. 9, No. 1-2, 93-110 (2005). Reviewer: Florin Nicolae (Berlin) MSC: 11M06 11M35 PDF BibTeX XML Cite \textit{L. Habsieger}, Ramanujan J. 9, No. 1--2, 93--110 (2005; Zbl 1159.11027) Full Text: DOI OpenURL
Ferreira, Chelo; López, José L. Asymptotic expansions of the Hurwitz–Lerch zeta function. (English) Zbl 1106.11034 J. Math. Anal. Appl. 298, No. 1, 210-224 (2004). Reviewer: Renata Macaitiene (Vilnius) MSC: 11M35 30D10 PDF BibTeX XML Cite \textit{C. Ferreira} and \textit{J. L. López}, J. Math. Anal. Appl. 298, No. 1, 210--224 (2004; Zbl 1106.11034) Full Text: DOI OpenURL
Laurinčikas, Antanas; Matsumoto, Kohji The joint universality and the functional independence for Lerch zeta-functions. (English) Zbl 0970.11034 Nagoya Math. J. 157, 211-227 (2000). Reviewer: K.Matsumoto (Nagoya) MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas} and \textit{K. Matsumoto}, Nagoya Math. J. 157, 211--227 (2000; Zbl 0970.11034) Full Text: DOI OpenURL
Stalker, John A convergence speeding algorithm with applications to numerical integration. (English) Zbl 0922.65016 Adv. Appl. Math. 22, No. 1, 119-153 (1999). Reviewer: P.Wynn (México) MSC: 65D32 65B05 40A25 PDF BibTeX XML Cite \textit{J. Stalker}, Adv. Appl. Math. 22, No. 1, 119--153 (1999; Zbl 0922.65016) Full Text: DOI OpenURL
Katsurada, Masanori Power series and asymptotic series associated with the Lerch zeta-function. (English) Zbl 0937.11035 Proc. Japan Acad., Ser. A 74, No. 10, 167-170 (1998). Reviewer: Zhang Wenpeng (Xi’an) MSC: 11M35 PDF BibTeX XML Cite \textit{M. Katsurada}, Proc. Japan Acad., Ser. A 74, No. 10, 167--170 (1998; Zbl 0937.11035) Full Text: DOI OpenURL
Laurinčikas, A.; Matsumoto, Kohji Joint value-distribution theorems for the Lerch zeta-functions. (English. Russian original) Zbl 0938.11046 Lith. Math. J. 38, No. 3, 238-249 (1998); translation from Liet. Mat. Rink 38, No. 3, 312-326 (1998). Reviewer: W.Haneke (Marburg) MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas} and \textit{K. Matsumoto}, Lith. Math. J. 38, No. 3, 238--249 (1998; Zbl 0938.11046); translation from Liet. Mat. Rink 38, No. 3, 312--326 (1998) Full Text: DOI OpenURL
Laurinčikas, A. On the Lerch zeta-function with rational parameters. (English. Russian original) Zbl 0930.11064 Lith. Math. J. 38, No. 1, 89-97 (1998); translation from Liet. Mat. Rink. 38, No. 1, 113-124 (1998). Reviewer: W.Haneke (Marburg) MSC: 11M35 PDF BibTeX XML Cite \textit{A. Laurinčikas}, Lith. Math. J. 38, No. 1, 89--97 (1998; Zbl 0930.11064); translation from Liet. Mat. Rink. 38, No. 1, 113--124 (1998) Full Text: DOI OpenURL
Garunkštis, R. An explicit form of limit distribution with weight for the Lerch zeta-function in the space of analytic functions. (English. Russian original) Zbl 0930.11063 Lith. Math. J. 37, No. 3, 230-242 (1997); translation from Liet Mat. Rink. 37, No. 3, 309-326 (1997). Reviewer: W.Haneke (Marburg) MSC: 11M35 11K99 60F05 PDF BibTeX XML Cite \textit{R. Garunkštis}, Lith. Math. J. 37, No. 3, 230--242 (1997; Zbl 0930.11063); translation from Liet Mat. Rink. 37, No. 3, 309--326 (1997) Full Text: DOI OpenURL
Laurinčikas, A. A limit theorem for the Lerch zeta-function in the space of analytic functions. (English. Russian original) Zbl 0898.11033 Lith. Math. J. 37, No. 2, 146-155 (1997); translation from Liet. Mat. Rink. 37, No. 2, 191-203 (1997). Reviewer: W.Haneke (Marburg) MSC: 11M35 11K99 PDF BibTeX XML Cite \textit{A. Laurinčikas}, Lith. Math. J. 37, No. 2, 146--155 (1997; Zbl 0898.11033); translation from Liet. Mat. Rink. 37, No. 2, 191--203 (1997) Full Text: DOI OpenURL
Garunkštis, R.; Laurinčikas, A. On the Lerch zeta-function. (English. Russian original) Zbl 0902.11035 Lith. Math. J. 36, No. 4, 337-346 (1996); translation from Liet. Mat. Rink. 36, No. 4, 423-434 (1996). Reviewer: Zhang Wenpeng (Xi’an) MSC: 11M35 11K99 60F05 PDF BibTeX XML Cite \textit{R. Garunkštis} and \textit{A. Laurinčikas}, Lith. Math. J. 36, No. 4, 337--346 (1996; Zbl 0902.11035); translation from Liet. Mat. Rink. 36, No. 4, 423--434 (1996) Full Text: DOI OpenURL
Bismut, Jean-Michel Equivariant short exact sequences of vector bundles and their analytic torsion forms. (English) Zbl 0817.32014 Compos. Math. 93, No. 3, 291-354 (1994). Reviewer: A.Morimoto (Nagoya) MSC: 32L10 32Q99 57R20 PDF BibTeX XML Cite \textit{J.-M. Bismut}, Compos. Math. 93, No. 3, 291--354 (1994; Zbl 0817.32014) Full Text: Numdam EuDML OpenURL
Klusch, Dieter On the Taylor expansion of the Lerch zeta-function. (English) Zbl 0763.11036 J. Math. Anal. Appl. 170, No. 2, 513-523 (1992). Reviewer: T.M.Apostol (Pasadena) MSC: 11M35 PDF BibTeX XML Cite \textit{D. Klusch}, J. Math. Anal. Appl. 170, No. 2, 513--523 (1992; Zbl 0763.11036) Full Text: DOI OpenURL
Gawronski, Wolfgang; Stadtmüller, Ulrich On the zeros of Lerch’s transcendental function with real parameters. (English) Zbl 0717.30009 J. Approximation Theory 53, No. 3, 354-364 (1988). MSC: 30C15 30E15 PDF BibTeX XML Cite \textit{W. Gawronski} and \textit{U. Stadtmüller}, J. Approx. Theory 53, No. 3, 354--364 (1988; Zbl 0717.30009) Full Text: DOI OpenURL
Klusch, Dieter Asymptotic equalities for the Lipschitz-Lerch zeta-function. (English) Zbl 0636.10034 Arch. Math. 49, 38-43 (1987). Reviewer: H.Müller MSC: 11M35 PDF BibTeX XML Cite \textit{D. Klusch}, Arch. Math. 49, 38--43 (1987; Zbl 0636.10034) Full Text: DOI OpenURL
Klusch, Dieter On the approximation of analytic functions in a strip. (English) Zbl 0574.30040 Math. Proc. Camb. Philos. Soc. 97, 381-384 (1985). Reviewer: H.Müller MSC: 30E10 PDF BibTeX XML Cite \textit{D. Klusch}, Math. Proc. Camb. Philos. Soc. 97, 381--384 (1985; Zbl 0574.30040) Full Text: DOI OpenURL
Gawronski, W.; Peyerimhoff, A. On the zeros of power series with rational coefficients. (English) Zbl 0367.30001 Arch. Math. 29, 173-186 (1977). MSC: 30C15 30B10 30B40 PDF BibTeX XML Cite \textit{W. Gawronski} and \textit{A. Peyerimhoff}, Arch. Math. 29, 173--186 (1977; Zbl 0367.30001) Full Text: DOI OpenURL