×

Dynamics of multiple degree Ginzburg-Landau vortices. (English) Zbl 1135.35014

This paper deals with a careful asymptotic analysis as \(\varepsilon\rightarrow 0\) of the complex-valued parabolic Ginzburg-Landau equation \(\frac{\partial u_\varepsilon}{\partial t}-\Delta u_\varepsilon =\frac{1}{\varepsilon^2}u_\varepsilon (1-| u_\varepsilon | ^2)\) on \(\mathbb R^2\times \mathbb R^+\). The authors focus on the description of the asymptotic behavior of solutions as \(\varepsilon\rightarrow 0\), under the only assumption that the initial datum \(u^0_\varepsilon (\cdot )\equiv u_\varepsilon (\cdot ,0)\) verifies \(E_\varepsilon (u^0_\varepsilon )\leq M_0| \log\varepsilon | \), where \(E_\varepsilon\) stands for the associated energy functional.
The main result of this paper provides a complete description of the trajectory set, in the sense that, asymptotically, vortices evolve according to a simple ordinary differential equation, which is a gradient flow of the Kirchhoff-Onsager functional, defined as \(W(a_1,\ldots ,a_n)=-2\sum_{i\not=j=1}^nd_id_j\log | a_i-a_j| \). Next, the authors study the asymptotic behavior of the trajectories near a branching point and show that, after a suitable parabolic rescaling centered at the collision point, vortices converge to the set of critical points of \(W\) restricted to a certain prescribed manifold. The proofs are based on powerful asymptotic estimates combined with original analytic arguments.

MSC:

35B25 Singular perturbations in context of PDEs
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
35K55 Nonlinear parabolic equations
Full Text: DOI

References:

[1] Baumann P., Chen C-N., Phillips D. and Sternberg P. (1995). Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. Eur. J. Appl. Math. 6: 115–126 · Zbl 0845.35042 · doi:10.1017/S0956792500001728
[2] Bethuel F., Orlandi G. and Smets D. (2006). Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Ann. Math. 163: 37–163 · Zbl 1103.35038 · doi:10.4007/annals.2006.163.37
[3] Bethuel F., Orlandi G. and Smets D. (2005). Collisions and phase-vortex interaction in dissipative Ginzburg-Landau dynamics. Duke Math. J. 130: 523–614 · Zbl 1092.11024 · doi:10.1215/S0012-7094-05-13034-4
[4] Bethuel F., Orlandi G. and Smets D. (2007). Quantization and motion law for Ginzburg-Landau vortices. Arch. Rat. Mech. Anal. 183: 315–370 · Zbl 1105.76062 · doi:10.1007/s00205-006-0018-4
[5] Brezis H., Coron J.-M. and Lieb E.H. (1986). Harmonic maps with defects. Commun. Math. Phys. 107: 649–705 · Zbl 0608.58016 · doi:10.1007/BF01205490
[6] Comte M. and Mironescu P. (1996). Remarks on nonminimizing solutions of a Ginzburg-Landau type equation. Asymptotic Anal. 13: 199–215 · Zbl 0861.35023
[7] E W. (1994). Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77: 383–404 · Zbl 0814.34039 · doi:10.1016/0167-2789(94)90298-4
[8] Federer H. (1969). Geometric Measure Theory. Springer Verlag, Berlin · Zbl 0176.00801
[9] Jerrard R.L. and Soner H.M. (1998). Dynamics of Ginzburg-Landau vortices. Arch. Rat. Mech. Anal. 142: 99–125 · Zbl 0923.35167 · doi:10.1007/s002050050085
[10] Kirchhoff, G.R.: Vorlesungen über Mathematische Physik (Vol. 1: Mechanik). Leipzig: Teubner, 1874
[11] Lin F.H. (1996). Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49: 323–359 · Zbl 0853.35058 · doi:10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E
[12] Lin F.H. (1996). A remark on the previous paper: ”Some dynamical properties of Ginzburg-Landau vortices”. Comm. Pure Appl. Math. 49: 361–364 · Zbl 0853.35059 · doi:10.1002/(SICI)1097-0312(199604)49:4<361::AID-CPA2>3.0.CO;2-A
[13] Neu, J.C.: Evolution and creation of vortices and domain walls. Department of Mathematics, University of California, Berkeley, Lecture notes (unpublished) · JFM 18.0510.01
[14] Neu J.C. (1990). Vortices in complex scalar fields. Phys. D 43: 385–406 · Zbl 0711.35024 · doi:10.1016/0167-2789(90)90143-D
[15] Ovchinnikov Y.N. and Sigal I.M. (2004). Symmetry-breaking solutions of the Ginzburg-Landau equation. J. Exp. Theor. Phys. 99: 1090–1107 · doi:10.1134/1.1842890
[16] Palmore J. (1982). Relative equilibria of vortices in two dimensions. Proc. Nat. Acad. Sci. U.S.A. 79: 716–718 · Zbl 0506.76016 · doi:10.1073/pnas.79.2.716
[17] Peres L. and Rubinstein J. (1993). Vortex dynamics in U(1) Ginzburg-Landau models. Phys. D 64: 299–309 · Zbl 0772.35069 · doi:10.1016/0167-2789(93)90261-X
[18] Pismen L.M. and Rubinstein J. (1991). Motion of vortex lines in the Ginzburg-Landau model. Phys. D 47: 353–360 · Zbl 0728.35090 · doi:10.1016/0167-2789(91)90035-8
[19] Rubinstein J. and Sternberg P. (1995). On the slow motion of vortices in the Ginzburg-Landau heat-flow. SIAM J. Appl. Math. 26: 1452–1466 · Zbl 0838.35102 · doi:10.1137/S0036141093259403
[20] Sandier E. and Serfaty S. (2004). Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Comm. Pure App. Math. 57: 1627–1672 · Zbl 1065.49011 · doi:10.1002/cpa.20046
[21] Serfaty, S.: Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow. Preprint 2005, to appear in J. Eur. Math. Soc.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.