Dolgachev, Igor V.; Iskovskikh, Vasily A. Finite subgroups of the plane Cremona group. (English) Zbl 1219.14015 Tschinkel, Yuri (ed.) et al., Algebra, arithmetic, and geometry. In honor of Yu. I. Manin on the occasion of his 70th birthday. Vol. I. Boston, MA: Birkhäuser (ISBN 978-0-8176-4744-5/hbk; 978-0-8176-4745-2/ebook). Progress in Mathematics 269, 443-548 (2009). The Cremona group is the group of birational transformations of the complex plane or, equivalently, the group of automorphisms of the field \(\mathbb{C}(x,y)\) that are the identity on the subfield \(\mathbb{C}\).The study of the finite subgroups of the Cremona group started a long time ago with the work of Wiman and Kantor in the 19th century. The classification was not completely achieved and the question of conjugation between the groups found was not studied.In the article under review, the authors make the list of Kantor and Wiman more precise. They use the technique of Mori theory, as it was already done to study the cyclic groups of prime order by L. Bayle and A. Beauville [Asian J. Math. 4, No. 1, 11–17 (2000; Zbl 1055.14012)] and by T. de Fernex [Nagoya Math. J. 174, 1–28 (2004; Zbl 1062.14019)]. Any finite subgroup of the Cremona group is conjugate to a finite group of (biregular) automorphisms of a smooth projective surface. Choosing the action to be minimal, we end up with either a del Pezzo surface or a conic bundle.The study of automorphisms of del Pezzo surfaces is made in detail in the article, together with the description of the elements in the associated Weyl groups. The case of conic bundle is more subtle. The authors find descriptions but not as precise as in the case of del Pezzo surfaces.The description of finite subgroups of the Cremona group given in the article is the most precise given up to now. It has been completely achieved in the case of cyclic groups by the reviewer [Comment. Math. Helv. 86, No. 2, 469–497 (2011; Zbl 1213.14029)]. The case of conic bundles has also been studied in details in the PhD thesis of V. I. Tsygankov, see e.g. [“Equations of \(G\)-minimal bundles on conics of degree 4”, Vestn. Mosk. Univ., Ser. I 2010, No. 2, 39–42 (2010); translation in Mosc. Univ. Math. Bull. 65, No. 2, 72–75 (2010), doi:10.3103/S002713221002004X].For the entire collection see [Zbl 1185.00041]. Reviewer: Jérémy Blanc (Basel) Cited in 15 ReviewsCited in 104 Documents MSC: 14E07 Birational automorphisms, Cremona group and generalizations 14J26 Rational and ruled surfaces 14J50 Automorphisms of surfaces and higher-dimensional varieties 20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures Keywords:Cremona group; del Pezzo surfaces; conic bundles Citations:Zbl 1055.14012; Zbl 1062.14019; Zbl 1213.14029 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] A. Adem, J. Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften, 309, Springer-Verlag, Berlin, 1994. · Zbl 0820.20060 [2] Alberich-CarramiÃČÂćÃćâĂŽÂňÃćâĆňÅŞana, M., Geometry of the plane Cremona maps, Lecture Notes in Mathematics (2002), Berlin: Springer-Verlag, Berlin · Zbl 0991.14008 [3] Autonne, L., Recherches sur les groupes d’ordre fini contenus dans le groupe Cremona, Premier Mémoire Généralités et groupes quadratiques, J. Math. Pures et Appl., 1, 4, 431-454 (1885) · JFM 17.0792.01 [4] Bannai, S.; Tokunaga, H., A note on embeddings of \(S_4\) and \(A_5\) into the Cremona group and versal Galois covers, Publ. Res. Inst. Math. Sci., 43, 1111-1123 (2007) · Zbl 1152.14014 · doi:10.2977/prims/1201012381 [5] Bayle, L.; Beauville, A., Birational involutions of \(P^2\), Asian J. Math., 4, 11-17 (2000) · Zbl 1055.14012 [6] J. Blanc, Finite abelian subgroups of the Cremona group of the plane, thesis, Univ. of Geneva, 2006. · Zbl 1141.14306 [7] J. Blanc, Elements and cyclic subgroups of finite order of the Cremona group, to appear in Com. Math. Helv. · Zbl 1213.14029 [8] Beauville, A.; Blanc, J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 339, 257-259 (2004) · Zbl 1062.14017 [9] Beauville, A., p-elementary subgroups of the Cremona group, J. Algebra, 314, 553-564 (2007) · Zbl 1126.14017 · doi:10.1016/j.jalgebra.2005.07.040 [10] Bertini, E., Ricerche sulle trasformazioni univoche involutorie nel piano, Annali di Mat. Pura Appl., 8, 2, 254-287 (1877) · JFM 09.0578.02 [11] Blichfeldt, H., Finite collineation groups, with an introduction to the theory of operators and substitution groups (1917), Chicago: Univ. of Chicago Press, Chicago [12] Bottari, A., Sulla razionalità dei piani multipli \(\{x,y,\sqrt[n]{F(x,y)}\}\), Annali di Mat. Pura Appl., 2, 3, 277-296 (1899) · JFM 30.0559.02 [13] A. Calabri, Sulle razionalità dei piani doppi e tripli cyclici, Ph.D. thesis, Univ. di Roma “La Sapienza”, 1999. [14] Calabri, A., On rational and ruled double planes, Annali. di Mat. Pura Appl., 181, 4, 365-387 (2002) · Zbl 1172.14329 · doi:10.1007/s102310100037 [15] R. Carter, Conjugacy classes in the Weyl group. in “Seminar on Algebraic Groups and Related Finite Groups”, The Institute for Advanced Study, Princeton, N.J., 1968/69, pp. 297-318, Springer, Berlin. [16] Castelnuovo, G., Sulle razionalità delle involutioni piani, Math. Ann, 44, 125-155 (1894) · JFM 25.0970.01 · doi:10.1007/BF01446977 [17] Castelnuovo, G.; Enriques, F., Sulle condizioni di razionalità dei piani doppia, Rend. Circ. Mat. di Palermo, 14, 290-302 (1900) · JFM 31.0658.02 · doi:10.1007/BF03012845 [18] A. Coble, Algebraic geometry and theta functions (reprint of the 1929 edition), A.M.S. Coll. Publ., v. 10. A.M.S., Providence, RI, 1982. MR0733252 (84m.14001) · JFM 55.0808.02 [19] Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of finite groups (1985), Eynsham: Oxford Univ. Press, Eynsham · Zbl 0568.20001 [20] Conway, J.; Smith, D., On quaternions and octonions: their geometry, arithmetic, and symmetry (2003), Natick, MA: A K Peters, Ltd., Natick, MA · Zbl 1098.17001 [21] Coolidge, J., A treatise on algebraic plane curves (1959), New York: Dover Publ., New York · Zbl 0085.36403 [22] Corti, A., Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., 4, 223-254 (1995) · Zbl 0866.14007 [23] de Fernex, T., On planar Cremona maps of prime order, Nagoya Math. J., 174, 1-28 (2004) · Zbl 1062.14019 [24] T. de Fernex, L. Ein, Resolution of indeterminacy of pairs, in “Algebraic geometry”, pp. 165-177, de Gruyter, Berlin, 2002. · Zbl 1098.14008 [25] Demazure, M.; Demazure, M.; Pinkham, H.; Teissier, B., Surfaces de Del Pezzo, I-V, in “Séminaire sur les Singularités des Surfaces”, Lecture Notes in Mathematics, 21-69 (1980), Berlin: Springer, Berlin · Zbl 0415.00010 [26] I. Dolgachev, Weyl groups and Cremona transformations. in “Singularities, Part 1 (Arcata, Calif., 1981)”, 283-294, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983. · Zbl 0527.14013 [27] I. Dolgachev, Topics in classical algebraic geometry, Part I, manuscript in preparations, see www.math.lsa.umich.edu/idolga/lecturenotes.html. [28] Du Val, P., On the Kantor group of a set of points in a plane, Proc. London Math. Soc., 42, 18-51 (1936) · Zbl 0015.20302 · doi:10.1112/plms/s2-42.1.18 [29] Enriques, F., Sulle irrazionalita da cui puo farsi dipendere la resoluzione d’un’ equazione algebrica \(f(x,y,z) = 0\) con funzioni razionali di due parametri, Math. Ann., 49, 1-23 (1897) · JFM 28.0559.02 · doi:10.1007/BF01445357 [30] Geiser, C., Über zwei geometrische Probleme, J. Reine Angew. Math., 67, 78-89 (1867) · ERAM 067.1737cj · doi:10.1515/crll.1867.67.78 [31] Gorenstein, D., Finite groups (1980), New York: Chelsea Publ. Co., New York · Zbl 0463.20012 [32] Goursat, É., Sur les substitutions orthogonales et les divisions rÃČâĂęÃĆ¡guliÃČâĂŽÃĆÂŔres de l’espace, Ann. de e’Ècole Norm. Sup, 6, 3, 9-102 (1889) · JFM 21.0530.01 [33] Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, No (1977), New York-Heidelberg: Springer-Verlag, New York-Heidelberg · Zbl 0367.14001 [34] Hosoh, T., Automorphism groups of cubic surfaces, J. Algebra, 192, 651-677 (1997) · Zbl 0910.14021 · doi:10.1006/jabr.1996.6968 [35] H. Hudson, Cremona transformations in plane and space, Cambridge Univ. Press. 1927. · JFM 53.0595.01 [36] Iskovskih, V. A., Rational surfaces with a pencil of rational curves (Russian) Mat, Sb. (N.S.), 74, 608-638 (1967) [37] Iskovskikh, V. A., Rational surfaces with a pencil of rational curves with positive square of the canonical class, Math. USSR Sbornik, 12, 93-117 (1970) · Zbl 0216.05902 [38] Iskovskih, V. A., Minimal models of rational surfaces over arbitrary fields (Russian) Izv, Akad. Nauk SSSR Ser. Mat., 43, 19-43 (1979) · Zbl 0412.14012 [39] Iskovskikh, V. A., Factorization of birational mappings of rational surfaces from the point of view of Mori theory (Russian), Uspekhi Mat. Nauk, 51, 3-72 (1996) · Zbl 0914.14005 [40] Iskovskikh, V. A., Two nonconjugate embeddings of the group \(S_3\times Z_2\) into the Cremona group (Russian), Tr. Mat. Inst. Steklova, 241, 105-109 (2003) · Zbl 1078.14015 [41] Iskovskikh, V. A., Two non-conjugate embeddings of \(S_3\times{\mathbb{Z}}_2\) into the Cremona group II, Adv. Study in Pure Math., 50, 251-267 (2008) · Zbl 1142.14011 [42] S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Berlin. Mayer & MÃČâĂęÃĆÂÿller. 111 S. gr. \(8^\circ . 1895\). · JFM 26.0770.03 [43] Kollár, J.; Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics (1998), Cambridge University Press: Cambridge, Cambridge University Press · Zbl 0926.14003 [44] Lemire, N.; Popov, V.; Reichstein, Z., Cayley groups, J. Amer. Math. Soc., 19, 921-967 (2006) · Zbl 1103.14026 · doi:10.1090/S0894-0347-06-00522-4 [45] Manin, Yu. I., Rational surfaces over perfect fields. II (Russian), Mat. Sb. (N.S.), 72, 161-192 (1967) [46] Manin, Yu. I.; Hazewinkel, M., Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library (1974), Amsterdam-London: North-Holland Publishing Co., Amsterdam-London · Zbl 0277.14014 [47] Noether, M., Über die ein-zweideutigen Ebenentransformationen (1878), Soc. zu Erlangen: Sitzungberichte der physic-medizin, Soc. zu Erlangen [48] Segre, B., The non-singular cubic surface (1942), Oxford Univ. Press: Oxford, Oxford Univ. Press · JFM 68.0358.01 [49] T. Springer, Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin-New York, 1977. · Zbl 0346.20020 [50] Wiman, A., Zur Theorie endlichen Gruppen von birationalen Transformationen in der Ebene, Math. Ann., 48, 195-240 (1896) · JFM 30.0600.01 · doi:10.1007/BF01446342 [51] Zassenhaus, H., The theory of groups (1949), New York: Chelsea Publ., New York · Zbl 0041.00704 [52] Zhang, D.-Q., Automorphisms of finite order on rational surfaces. With an appendix by I. Dolgachev, J. Algebra, 238, 560-589 (2001) · Zbl 1057.14053 · doi:10.1006/jabr.2000.8673 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.