×

Librations of a body composed of a deformable mantle and a fluid core. (English) Zbl 1487.74085

Summary: We present fully three-dimensional equations to describe the rotations of a body made of a deformable mantle and a fluid core. The model in its essence is similar to that used by INPOP19a (Integration Planétaire de l’Observatoire de Paris) Fienga et al. (INPOP19a planetary ephemerides. Notes Scientifiques et Techniques de l’Institut de Mécanique Céleste, vol 109, 2019), and by JPL (Jet Propulsion Laboratory) [Park et al., The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astron J. 161, No. 3, 105 (2021; doi:10.3847/1538-3881/abd414)], to represent the Moon. The intended advantages of our model are: straightforward use of any linear-viscoelastic model for the rheology of the mantle; easy numerical implementation in time-domain (no time lags are necessary); all parameters, including those related to the “permanent deformation”, have a physical interpretation. The paper also contains: (1) A physical model to explain the usual lack of hydrostaticity of the mantle (permanent deformation). (2) Formulas for free librations of bodies in and out-of spin-orbit resonance that are valid for any linear viscoelastic rheology of the mantle. (3) Formulas for the offset between the mantle and the idealised rigid-body motion (Peale’s Cassini states). (4) Applications to the librations of Moon, Earth, and Mercury that are used for model validation.

MSC:

74L05 Geophysical solid mechanics
86A04 General questions in geophysics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnold, VI, Ordinary Differential Equations (1992), Berlin: Springer Textbook. Springer, Berlin · Zbl 0744.34001
[2] Baland, Rose-Marie; Yseboodt, Marie; Rivoldini, Attilio; Van Hoolst, Tim, Obliquity of Mercury: Influence of the precession of the pericenter and of tides, Icarus, 291, 136-159 (2017) · doi:10.1016/j.icarus.2017.03.020
[3] Batchelor, GK, An Introduction to Fluid Dynamics (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[4] Beuthe, Mikael, Tidal Love numbers of membrane worlds: Europa, Titan, and Co., Icarus, 258, 239-266 (2015) · doi:10.1016/j.icarus.2015.06.008
[5] Bland, DR, Linear Viscoelasticity (1960), Oxford: Pergamon Press, Oxford · Zbl 0108.38501
[6] Boué, Gwenaël, Cassini states of a rigid body with a liquid core, Celest. Mech. Dyn. Astron., 132, 1-26 (2020) · Zbl 1448.70009 · doi:10.1007/s10569-020-09961-9
[7] Boué, Gwenaël; Rambaux, Nicolas; Richard, Andy, Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity, Celest. Mech. Dyn. Astron., 129, 4, 449-485 (2017) · Zbl 1379.70042 · doi:10.1007/s10569-017-9790-8
[8] Běhounková, Marie; Tobie, Gabriel; Choblet, Gaël; Čadek, Ondřej, Coupling mantle convection and tidal dissipation: applications to Enceladus and Earth-like planets, J. Geophys. Res., 115, E9, E09011 (2010) · doi:10.1029/2009JE003564
[9] Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej, Plume activity and tidal deformation on enceladus influenced by faults and variable ice shell thickness, Astrobiology, 17, 9, 941-954 (2017) · doi:10.1089/ast.2016.1629
[10] Capitaine, Nicole; Guinot, B.; Souchay, J., A non-rotating origin on the instantaneous equator: definition, properties and use, Celest. Mech., 39, 3, 283-307 (1986) · Zbl 0614.70009 · doi:10.1007/BF01234311
[11] Chandrasekhar, Subrahmanyan, Ellipsoidal Figures of Equilibrium (1969), London: Yale University Press, London · Zbl 0213.52304
[12] Colombo, G., Cassini’s second and third laws, Astron. J., 71, 891 (1966) · doi:10.1086/109983
[13] Correia, ACM; Ragazzo, C.; Ruiz, LS, The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies, Celest. Mech. Dyn. Astron., 130, 8, 51 (2018) · Zbl 1447.70021 · doi:10.1007/s10569-018-9847-3
[14] Correia, Alexandre CM; Delisle, Jean-Baptiste, Spin-orbit coupling for close-in planets, Astron. Astrophys., 630, A102 (2019) · doi:10.1051/0004-6361/201936336
[15] Correia, Alexandre CM; Boué, Gwenaël; Laskar, Jacques; Rodríguez, Adrián, Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology, Astron. Astrophys., 571, A50 (2014) · doi:10.1051/0004-6361/201424211
[16] Deleplace, Bérangère; Cardin, Philippe, Viscomagnetic torque at the core mantle boundary, Geophys. J. Int., 167, 2, 557-566 (2006) · doi:10.1111/j.1365-246X.2006.03180.x
[17] Eckhardt, Donald H., Theory of the libration of the Moon, Moon Planets, 25, 1, 3-49 (1981) · Zbl 0482.70008 · doi:10.1007/BF00911807
[18] Efroimsky, Michael, Bodily tides near spin-orbit resonances, Celest. Mech. Dyn. Astron., 112, 3, 283-330 (2012) · doi:10.1007/s10569-011-9397-4
[19] Efroimsky, Michael, Tidal dissipation compared to seismic dissipation: In small bodies, Earths, and super-Earths, Astrophys. J., 746, 2, 150 (2012) · doi:10.1088/0004-637X/746/2/150
[20] Ferraz-Mello, Sylvio; Beaugé, Cristian; Folonier, Hugo A.; Gomes, Gabriel O., Tidal friction in satellites and planets. The new version of the creep tide theory, Eur. Phys. J. Special Topics, 229, 1441-1462 (2020) · doi:10.1140/epjst/e2020-900184-5
[21] Fienga, A., Deram, P., Viswanathan, V., Di Ruscio, A., Bernus, L., Durante, D., Gastineau, M., Laskar, J.: INPOP19a planetary ephemerides. Notes Scientifiques et Techniques de l’Institut de Mécanique Céleste, 109, (December 2019)
[22] Folkner, WM; Williams, JG; Boggs, DH; Park, RS; Kuchynka, P., The Planetary and Lunar Ephemerides DE430 and DE431, Interplanet. Netw. Progress Rep., 42-196, 1-81 (2014)
[23] Folonier, Hugo A.; Ferraz-Mello, Sylvio, Tidal synchronization of an anelastic multi-layered body: Titan’s synchronous rotation, Celest. Mech. Dyn. Astron., 129, 4, 359-396 (2017) · Zbl 1379.70043 · doi:10.1007/s10569-017-9777-5
[24] Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T., Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science, Icarus, 272, 228-245 (2016) · doi:10.1016/j.icarus.2016.02.050
[25] Gevorgyan, Yeva, Homogeneous model for the TRAPPIST-1e planet with an icy layer, Astron. Astrophys., 650, A141 (2021) · doi:10.1051/0004-6361/202140736
[26] Gevorgyan, Yeva, Boué, Gwenaël, Ragazzo, Clodoaldo, Ruiz, Lucas S., Correia, Alexandre C.M.: Andrade rheology in time-domain. application to Enceladus’ dissipation of energy due to forced libration. Icarus, 343:113610, (2020). doi:10.1016/j.icarus.2019.113610. URL http://www.sciencedirect.com/science/article/pii/S0019103519305020
[27] Glickman. Glossary of Meteorology. American Meteorological Society (2000)
[28] Goldreich, Peter; Toomre, Alar, Some remarks on polar wandering, J. Geophys. Res., 74, 10, 2555-2567 (1969) · doi:10.1029/JB074i010p02555
[29] Gross, Richard S., Earth rotation variations-long period, Treatise Geophys., 3, 239-294 (2007) · doi:10.1016/B978-044452748-6/00057-2
[30] Guinot, B.: Basic problems in the kinematics of the rotation of the Earth. In Symposium-International Astronomical Union, Vol. 82, pp. 7-18. Cambridge University Press, Cambridge (1979)
[31] Henrard, Jacques, The rotation of Io with a liquid core, Celest. Mech. Dyn. Astron., 101, 1-2, 1-12 (2008) · Zbl 1308.76296 · doi:10.1007/s10569-008-9135-8
[32] Holm, DD; Schmah, T.; Stoica, C., Geometric Mechanics and Symmetry (2009), New York: Oxford University Press, New York · Zbl 1175.70001
[33] Hough, Sydney Samuel, Xii. the oscillations of a rotating ellipsoidal shell containing fluid, Philosoph. Trans. R Soc. Lond. A, 186, 469-506 (1895) · JFM 26.0889.01 · doi:10.1098/rsta.1895.0012
[34] Iess, Luciano; Stevenson, DJ; Parisi, M.; Hemingway, D.; Jacobson, RA; Lunine, JI; Nimmo, F.; Armstrong, JW; Asmar, SW; Ducci, M., The gravity field and interior structure of Enceladus, Science, 344, 6179, 78-80 (2014) · doi:10.1126/science.1250551
[35] Jacobson, RA; Lainey, V., Martian satellite orbits and ephemerides, Planet. Space Sci., 102, 35-44 (2014) · doi:10.1016/j.pss.2013.06.003
[36] Lainey, Valéry, Quantification of tidal parameters from Solar System data, Celest. Mech. Dyn. Astron., 126, 1-3, 145-156 (2016) · doi:10.1007/s10569-016-9695-y
[37] Lamb, H., Hydrodynamics (1932), Cambridge: Cambridge Mathematical Library, Cambridge · JFM 58.1298.04
[38] Lambeck, K., The Earth’s Variable Rotation: Geophysical Causes and Consequences (1980), UK: Cambridge University Press, UK · doi:10.1017/CBO9780511569579
[39] Margot, J.-L., Hauck II, S.A., Mazarico, E., Peale, S.J., Padovan, S.: Mercury’s internal structure. Mercury-The view after MESSENGER, pp. 85-113, (2018)
[40] Mathews, P.M., Herring, T.A., Buffett, B.A.: Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res. Solid Earth, 107 (B4):ETG-3 (2002)
[41] Matsui, Hiroaki; Buffett, Bruce A., Large-eddy simulations of convection-driven dynamos using a dynamic scale-similarity model, Geophys. Astrophys. Fluid Dyn., 106, 3, 250-276 (2012) · Zbl 1521.86039 · doi:10.1080/03091929.2011.590806
[42] Matsuyama, Isamu, Tidal dissipation in the oceans of icy satellites, Icarus, 242, 11-18 (2014) · doi:10.1016/j.icarus.2014.07.005
[43] Matsuyama, Isamu; Beuthe, Mikael; Hay, Hamish C. F. C.; Nimmo, Francis; Kamata, Shunichi, Ocean tidal heating in icy satellites with solid shells, Icarus, 312, 208-230 (2018) · doi:10.1016/j.icarus.2018.04.013
[44] Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C., The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit, J. Geophys. Res. Planets, 119, 12, 2417-2436 (2014) · doi:10.1002/2014JE004675
[45] McKenzie, Dan P., The viscosity of the lower mantle, J. Geophys. Res., 71, 16, 3995-4010 (1966) · doi:10.1029/JZ071i016p03995
[46] Munk, WH; MacDonald, GJF, The Rotation of the Earth (1961), New York: Cambridge University Press, New York · Zbl 1159.86300
[47] Nastula, J.; Gross, R., Chandler wobble parameters from SLR and GRACE, J. Geophys. Res. Solid Earth, 120, 6, 4474-4483 (2015) · doi:10.1002/2014JB011825
[48] Nimmo, F.; Pappalardo, RT, Ocean worlds in the outer solar system, J. Geophys. Res., 121, 8, 1378-1399 (2016) · doi:10.1002/2016JE005081
[49] Noyelles, Benoît, Rotation of a synchronous viscoelastic shell, Mon. Not. R. Astron. Soc., 474, 4, 5614-5644 (2018) · doi:10.1093/mnras/stx3122
[50] Park, Ryan S.; Folkner, William M.; Williams, James G.; Boggs, Dale H., The JPL Planetary and Lunar Ephemerides DE440 and DE441, Astron. J., 161, 3, 105 (2021) · doi:10.3847/1538-3881/abd414
[51] Peale, Stanton J., Generalized Cassini’s laws, Astron. J., 74, 483 (1969) · Zbl 0215.57003 · doi:10.1086/110825
[52] Peale, Stanton J., Possible histories of the obliquity of Mercury, Astron. J., 79, 722 (1974) · doi:10.1086/111604
[53] Peale, Stanton J.; Margot, Jean-Luc; Hauck, Steven A.; Solomon, Sean C., Effect of core-mantle and tidal torques on Mercury’s spin axis orientation, Icarus, 231, 206-220 (2014) · doi:10.1016/j.icarus.2013.12.007
[54] Pedlosky, Joseph, Geophysical Fluid Dynamics (2013), New York: Springer Science & Business Media, New York · Zbl 0429.76001
[55] Petit, G., Luzum, B.: IERS conventions (2010). Technical report, DTIC Document (2010)
[56] Poincaré, Henri, Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation, Acta Math., 7, 1, 259-380 (1885) · JFM 17.0864.02 · doi:10.1007/BF02402204
[57] Poincaré, Henri, Sur la précession des corps déformables, Bulletin Astronomique, Serie, I, 27, 321-356 (1910) · Zbl 1308.74043
[58] Ragazzo, C.; Ruiz, LS, Viscoelastic tides: models for use in Celestial Mechanics, Celest. Mech. Dyn. Astron., 128, 1, 19-59 (2017) · Zbl 1365.70015 · doi:10.1007/s10569-016-9741-9
[59] Ragazzo, C.; Ruiz, LS, Dynamics of an isolated, viscoelastic, self-gravitating body, Celest. Mech. Dyn. Astron., 122, 4, 303-332 (2015) · Zbl 1322.70011 · doi:10.1007/s10569-015-9620-9
[60] Ragazzo, Clodoaldo, The theory of figures of Clairaut with focus on the gravitational modulus: inequalities and an improvement in the Darwin-Radau equation, São Paulo J. Math. Sci., 14, 1-48 (2020) · Zbl 1435.70032 · doi:10.1007/s40863-019-00162-3
[61] Ragazzo, Clodoaldo; Ruiz, LS, Viscoelastic tides: models for use in Celestial Mechanics, Celest. Mech. Dyn. Astron., 128, 1, 19-59 (2017) · Zbl 1365.70015 · doi:10.1007/s10569-016-9741-9
[62] Rambaux, N.; Williams, JG, The Moon’s physical librations and determination of their free modes, Celest. Mech. Dyn. Astron., 109, 1, 85-100 (2011) · Zbl 1270.70050 · doi:10.1007/s10569-010-9314-2
[63] Roberts, PH, Stewartson, K: On the motion of a liquid in a spheroidal cavity of a precessing rigid body. II. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 61, pp. 279-288. Cambridge University Press, (1965)
[64] Rochester, MG; Smylie, DE, On changes in the trace of the Earth’s inertia tensor, J. Geophys. Res., 79, 32, 4948-4951 (1974) · doi:10.1029/JB079i032p04948
[65] Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Peale, Stanton J.; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C., First MESSENGER orbital observations of Mercury’s librations, Geophys. Res. Lett., 42, 19, 7881-7889 (2015) · doi:10.1002/2015GL065152
[66] Steinbrügge, G.; Padovan, S.; Hussmann, H.; Steinke, T.; Stark, A.; Oberst, J., Viscoelastic tides of mercury and the determination of its inner core size, J. Geophys. Res. Planets, 123, 10, 2760-2772 (2018) · doi:10.1029/2018JE005569
[67] Stewartson, K.; Roberts, PH, On the motion of liquid in a spheroidal cavity of a precessing rigid body, J. Fluid Mech., 17, 1, 1-20 (1963) · Zbl 0117.45801 · doi:10.1017/S0022112063001063
[68] Thomas, PC; Tajeddine, R.; Tiscareno, MS; Burns, JA; Joseph, J.; Loredo, TJ; Helfenstein, P.; Porco, C., Enceladus’s measured physical libration requires a global subsurface ocean, Icarus, 264, 37-47 (2016) · doi:10.1016/j.icarus.2015.08.037
[69] Tilgner, Andreas; Busse, FH, Fluid flows in precessing spherical shells, J. Fluid Mech., 426, 387 (2001) · Zbl 0973.76095 · doi:10.1017/S0022112000002536
[70] Triana, Santiago Andrés; Rekier, Jérémy; Trinh, Antony; Dehant, Veronique, The coupling between inertial and rotational eigenmodes in planets with liquid cores, Geophys. J. Int., 218, 2, 1071-1086 (2019) · doi:10.1093/gji/ggz212
[71] Van Hoolst, T., Baland, R., Trinh, A.: On the librations and tides of large icy satellites. Icarus 226(1), 299-315 (2013). doi:10.1016/j.icarus.2013.05.036. URL http://www.sciencedirect.com/science/article/pii/S0019103513002364
[72] Viswanathan, V.; Rambaux, N.; Fienga, A.; Laskar, J.; Gastineau, M., Observational constraint on the radius and oblateness of the Lunar Core-Mantle boundary, Geophys. Res. Lett., 46, 13, 7295-7303 (2019) · doi:10.1029/2019GL082677
[73] Vondrák, Jan; Ron, Cyril; Chapanov, Ya, New determination of period and quality factor of Chandler wobble, considering geophysical excitations, Adv. Space Res., 59, 5, 1395-1407 (2017) · doi:10.1016/j.asr.2016.12.001
[74] Williams, James G., Contributions to the Earth’s obliquity rate, precession, and nutation, Astron. J., 108, 711-724 (1994) · doi:10.1086/117108
[75] Williams, J.G., Boggs, D.H.: Lunar core and mantle. what does LLR see. In Proceedings of the 16th International Workshop on Laser Ranging, Poznan, Poland, Vol. 1317, (2008)
[76] Williams, James G.; Boggs, Dale H.; Yoder, Charles F.; Todd Ratcliff, J.; Dickey, Jean O., Lunar rotational dissipation in solid body and molten core, J. Geophys. Res. Planets, 106, E11, 27933-27968 (2001) · doi:10.1029/2000JE001396
[77] Williams, James G.; Konopliv, Alexander S.; Boggs, Dale H.; Park, Ryan S.; Yuan, Dah-Ning; Lemoine, Frank G.; Goossens, Sander; Mazarico, Erwan; Nimmo, Francis; Weber, Renee C., Lunar interior properties from the GRAIL mission, J. Geophys. Res. Planets, 119, 7, 1546-1578 (2014) · doi:10.1002/2013JE004559
[78] Yan, Jianguo; Goossens, Sander; Matsumoto, Koji; Ping, Jinsong; Harada, Yuji; Iwata, Takahiro; Namiki, Noriyuki; Li, Fei; Tang, Geshi; Cao, Jianfeng, CEGM02: An improved lunar gravity model using Chang’E-1 orbital tracking data, Planet. Space Sci., 62, 1, 1-9 (2012) · doi:10.1016/j.pss.2011.11.010
[79] Yoder, Charles F., Astrometric and geodetic properties of Earth and the Solar System, Glob. Earth Phys. A Handbook Phys. Const., 1, 1-31 (1995)
[80] Zanazzi, JJ; Lai, Dong, Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars, Mon. Not. R. Astron. Soc., 469, 3, 2879-2885 (2017) · doi:10.1093/mnras/stx1076
[81] Zhang, Wenying; Shen, Wenbin, New estimation of triaxial three-layered Earth’s inertia tensor and solutions of Earth rotation normal modes, Geodesy Geodyn., 11, 5, 307-315 (2020) · doi:10.1016/j.geog.2020.03.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.