Borovskikh, A. V. Eikonal equation for anisotropic media. (English. Russian original) Zbl 1301.35164 J. Math. Sci., New York 197, No. 2, 248-289 (2014); translation from Tr. Semin. Im. I. G. Petrovskogo 29, No. 1, 162-229 (2013). Summary: The methods of group analysis are applied to establish a classification of eikonal equations for anisotropic stationary media, \(g^{ij}(x)\psi_{i}\psi_{j} = 1\). The equivalence group and the groups of symmetries are described. The classification is based on the fact that the Riemannian space (with the metric \(ds^{2} = g_{ij}(x) dx^{i}dx^{j})\) associated with the equation has a special structure, namely, that of a semi-homogeneous space: the metric form can be represented as \(ds^2=g_{\hat\imath \hat\jmath}(\hat x)\,dx^{\hat\imath}\,dx^{\hat\jmath}+ G^2(\hat x) g_{\tilde \imath\tilde \jmath}(x)\,dx^{\tilde \imath}\,dx^{\tilde \jmath}\), where the principal part \(g_{\hat\imath \hat\jmath}(\hat x)\,dx^{\hat\imath}\,dx^{\hat\jmath}\) is the metric of a Riemannian space of constant curvature. Cited in 2 Documents MSC: 35Q60 PDEs in connection with optics and electromagnetic theory 78A40 Waves and radiation in optics and electromagnetic theory Keywords:wave equations; eikonal equations PDF BibTeX XML Cite \textit{A. V. Borovskikh}, J. Math. Sci., New York 197, No. 2, 248--289 (2014; Zbl 1301.35164); translation from Tr. Semin. Im. I. G. Petrovskogo 29, No. 1, 162--229 (2013) Full Text: DOI OpenURL References: [1] R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964). · Zbl 0121.07801 [2] V. G. Gogoladze, ”Wave equation for nonhomogeneous and anisotropic media,” Tr. Mat. Inst. Steklova, 9, 107–166 (1935). [3] V. M. Babich and A. A. Klimova, ”Hyperbolic equation with a large parameter by lower-order terms and hierarchy of waves,” Algebra Anal., 6, No. 5, 126–171 (1994). · Zbl 0827.35071 [4] A. V. Borovskikh, ”Two-dimensional eikonal equation,” Sib. Mat. Zh., 47, No. 5, 993–1018 (2006). · Zbl 1150.76463 [5] A. V. Borovskikh, ”Eikonal equation in nonhomogeneous media,” Dokl. Ross. Akad. Nauk, 391, No. 5, 587–590 (2003). [6] A. V. Borovskikh, ”Group classification of eikonal equations for three-dimensional nonhomogeneous media,” Mat. Sb., 195, No. 4, 23–64 (2004). · Zbl 1073.35056 [7] A. V. Borovskikh, ”Equivalence groups for eikonal equations and classes of equivalent equations,” Vestn. NGU, No. 4, 3–42 (2006). · Zbl 1249.35006 [8] L. P. Eisenhart, Riemannian Geometry [Russian translation], Inostr. Lit., Moscow (1948). [9] L. V. Ovsyannikov, ”Group properties of the Chaplygin equation,” Prikl. Mekh. Tekh. Fiz., No. 3, 126–145 (1960). · Zbl 1307.35012 [10] L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978). · Zbl 0484.58001 [11] N. Kh. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], Nauka, Moscow (1983). [12] P. Olver, Applications of Lie Groups to Differential Equations [Russian translation], Mir, Moscow (1989). · Zbl 0743.58003 [13] L. V. Ovsyannikov, SUDMODELS Software. Gas dynamics, Prikl. Mat. Mekh., 58, No. 5, 30–55 (1994). [14] S. V. Meleshko, ”Homogeneous autonomous systems with three independent variables,” Prikl. Mat. Mekh., 58, No. 5, 97–102 (1994). · Zbl 0923.76272 [15] J. von Weingarten, ”Über die Eigenschaften des Linienelementes der Flächen von constantem Krümmungmass,” J. für Math., 94, H. 3, 181–202 (1883). · JFM 15.0637.01 [16] L. Bianki, ”Sull’applicatbilitá di due spazi colla medesima curvatura di Riemann constante,” in: Opere, Vol. IX, pp. 7–15. [17] A. Delgleize, ”Sur les équations de Weingarten et les espaces pseudosphériques,” Bull. Soc. Roy. Sci. Liège, 4, No. 4-5, 158–161 (1935). · Zbl 0011.32301 [18] A. Fialkov, ”Conformal geodesics,” Trans. Am. Math. Soc., 45, No. 3, 443–473 (1939). · JFM 65.0798.02 [19] K. Yano, ”Concircular geometry II. Integrability conditions of {\(\rho\)} {\(\mu\)}{\(\nu\)} = g {\(\mu\)}{\(\nu\)} ,” Proc. Imp. Acad. Tokyo, 16, 354–360 (1940). · Zbl 0024.18403 [20] A. S. Solodovnikov, ”Spaces with common geodesics,” Tr. Sem. Vektor. Tenzor. Anal., No. 1, 43–102 (1961). [21] A. S. Solodovnikov, ”Projective transformations of Riemannian spaces,” Usp. Mat. Nauk, 11, No. 4, 45–116 (1956). [22] H. L. De Vries, ” Über Riemannsche Räume, die infinitesimale konforme Transformationen gestatten,” Math. Z., 60, 328–347 (1954). · Zbl 0056.15203 [23] G. I. Kruchkovich, ”On semi-reducible Riemannian spaces,” Dokl. Akad. Nauk SSSR, 115, No. 5, 862–865 (1957). · Zbl 0080.37301 [24] G. I. Kruchkovich, ”On a class of Riemannian spaces,” Tr. Sem. Vektor. Tenzor. Anal., No. 11, 103–128 (1961). [25] A. Z. Petrov, New Methods in the General Relativity Theory [in Russian], Nauka, Moscow (1966). · Zbl 0203.19602 [26] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry and Its Applications [in Russian], Nauka, Moscow (1986). · Zbl 0601.53001 [27] D. V. Alexeevskii, E. V. Vinberg, and A. S. Solodovnikov, ”Geometry of spaces of constant curvature,” Itogi Nauki Tekh., 29, 5–146 (1980). [28] A. V. Aminova, ”Pseudo-Riemannian manifolds with common geodesics,” Usp. Mat. Nauk, 48, No. 2, 107–164 (1993). · Zbl 0933.53002 [29] A. V. Aminova, ”Lie algebras of infinitesimal projective transformations of Lorentz manifolds,” Usp. Mat. Nauk, 50, No. 1, 69–142 (1995). · Zbl 0888.53043 [30] A. V. Aminova, Projective Transformations of Pseudo-Riemannian Manifolds [in Russian], Yanus-K, Moscow (2002). · Zbl 1043.53054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.