×

Error bounds, duality, and the Stokes phenomenon. I. (English. Russian original) Zbl 1203.30039

St. Petersbg. Math. J. 21, No. 6, 903-956 (2010); translation from Algebra Anal. 21, No. 6, 80-150 (2009).
Summary: We consider classes of functions uniquely determined by coefficients of their divergent expansions. Approximating a function in such a class by partial sums of its expansion, we study how the accuracy changes when we move within a given region of the complex plane. An analysis of these changes allows us to propose a theory of divergent expansions, which includes a duality theorem and the Stokes phenomenon as essential parts. In its turn, this enables us to formulate necessary and sufficient conditions for a particular divergent expansion to encounter the Stokes phenomenon. We derive explicit expressions for the exponentially small terms that appear upon crossing Stokes lines and lead to an improvement in the accuracy of the expansion.

MSC:

30E15 Asymptotic representations in the complex plane
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. E. Meyer, A simple explanation of the Stokes phenomenon, SIAM Rev. 31 (1989), no. 3, 435 – 445. · Zbl 0679.34068 · doi:10.1137/1031090
[2] M. V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 211 – 221 (1989). · Zbl 0701.58012
[3] M. V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc. London Ser. A 422 (1989), no. 1862, 7 – 21. · Zbl 0683.33004
[4] M. V. Berry, Infinitely many Stokes smoothings in the gamma function, Proc. Roy. Soc. London Ser. A 434 (1991), no. 1891, 465 – 472. · Zbl 0729.33002 · doi:10.1098/rspa.1991.0106
[5] Michael Berry, Asymptotics, superasymptotics, hyperasymptotics…, Asymptotics beyond all orders (La Jolla, CA, 1991) NATO Adv. Sci. Inst. Ser. B Phys., vol. 284, Plenum, New York, 1991, pp. 1 – 14.
[6] R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes integrals, Encyclopedia of Mathematics and its Applications, vol. 85, Cambridge University Press, Cambridge, 2001. · Zbl 0983.41019
[7] Jean-Pierre Ramis, Séries divergentes et théories asymptotiques, Bull. Soc. Math. France 121 (1993), no. Panoramas et Synthèses, suppl., 74 (French). · Zbl 0830.34045
[8] Jean-Pierre Ramis, Stokes phenomenon: historical background, The Stokes phenomenon and Hilbert’s 16th problem (Groningen, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 1 – 5. · Zbl 0857.34016
[9] R. B. Paris and A. D. Wood, Stokes phenomenon demystified, Bull. Inst. Math. Appl. 31 (1995), no. 1-2, 21 – 28. · Zbl 0827.34002
[10] G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Philos. Soc. 9 (1850), 166-187; On the discontinuity of arbitrary constants which appear in divergent developments, Trans. Camb. Philos. Soc. 10 (1857), 106-128; Memoir and scientific correspondence, selected and arranged by J. Larmor, Vol. II, Cambridge Univ. Press, London-New York, 1907, pp. 159-160.
[11] V. L. Pokrovskiĭ and I. M. Khalatnikov, On the problem of above-barrier reflection of high-energy particles, Zh. Èksper. Teoret. Fiz. 40 (1961), no. 6, 1713-1719; English transl., Soviet Phys. JETP 13 (1961), 1207-1210.
[12] John P. Boyd, The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56 (1999), no. 1, 1 – 98. · Zbl 0972.34044 · doi:10.1023/A:1006145903624
[13] V. P. Gurariĭ, Group methods of commutative harmonic analysis, Current problems in mathematics. Fundamental directions, Vol. 25, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 4 – 303 (Russian). V. P. Gurarii, Group methods in commutative harmonic analysis [ MR0982753 (90f:43001)], Commutative harmonic analysis, II, Encyclopaedia Math. Sci., vol. 25, Springer, Berlin, 1998, pp. 1 – 325.
[14] G. N. Watson, A theory of asymptotic series, Philos. Trans. Roy. Soc. London Ser. A 211 (1911), 279-313. · JFM 42.0273.01
[15] F. Nevanlinna, Zur Theorie der asymptotischen Potenzreihen, Ann. Acad. Sci. Fenn. Ser. A 12 (1916), no. 1. · JFM 46.1463.01
[16] T. Carleman, Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926. · JFM 52.0255.02
[17] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. · Zbl 0032.05801
[18] R. B. Dingle, Asymptotic expansions and converging factors. I. General theory and basic converging factors, Proc. Roy. Soc. London. Ser. A 244 (1958), 456 – 475. , https://doi.org/10.1098/rspa.1958.0054 R. B. Dingle, Asymptotic expansions and converging factors. II. Error, Dawson, Fresnel, exponential, sine and cosine, and similar integrals, Proc. Roy. Soc. London. Ser. A 244 (1958), 476 – 483. , https://doi.org/10.1098/rspa.1958.0055 R. B. Dingle, Asymptotic expansions and converging factors. III. Gamma, psi and polygamma functions, and Fermi-Dirac and Bose-Einstein integrals, Proc. Roy. Soc. London. Ser. A 244 (1958), 484 – 490. · Zbl 0080.04302 · doi:10.1098/rspa.1958.0056
[19] R. B. Dingle, Asymptotic expansions and converging factors. IV. Confluent hypergeometric, parabolic cylinder, modified Bessel, and ordinary Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 270 – 283. , https://doi.org/10.1098/rspa.1959.0022 R. B. Dingle, Asymptotic expansions and converging factors. V. Lommel, Struve, modified Struve, Anger and Weber functions, and integrals of ordinary and modified Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 284 – 292. , https://doi.org/10.1098/rspa.1959.0023 R. B. Dingle, Asymptotic expansions and converging factors. VI. Application to physical prediction, Proc. Roy. Soc. London. Ser. A 249 (1959), 293 – 295. , https://doi.org/10.1098/rspa.1959.0024 R. B. Dingle, Asymptotic expansions and converging factors. IV. Confluent hypergeometric, parabolic cylinder, modified Bessel, and ordinary Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 270 – 283. , https://doi.org/10.1098/rspa.1959.0022 R. B. Dingle, Asymptotic expansions and converging factors. V. Lommel, Struve, modified Struve, Anger and Weber functions, and integrals of ordinary and modified Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 284 – 292. , https://doi.org/10.1098/rspa.1959.0023 R. B. Dingle, Asymptotic expansions and converging factors. VI. Application to physical prediction, Proc. Roy. Soc. London. Ser. A 249 (1959), 293 – 295. , https://doi.org/10.1098/rspa.1959.0024 R. B. Dingle, Asymptotic expansions and converging factors. IV. Confluent hypergeometric, parabolic cylinder, modified Bessel, and ordinary Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 270 – 283. , https://doi.org/10.1098/rspa.1959.0022 R. B. Dingle, Asymptotic expansions and converging factors. V. Lommel, Struve, modified Struve, Anger and Weber functions, and integrals of ordinary and modified Bessel functions, Proc. Roy. Soc. London. Ser. A 249 (1959), 284 – 292. , https://doi.org/10.1098/rspa.1959.0023 R. B. Dingle, Asymptotic expansions and converging factors. VI. Application to physical prediction, Proc. Roy. Soc. London. Ser. A 249 (1959), 293 – 295. · Zbl 0082.28502 · doi:10.1098/rspa.1959.0024
[20] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1973. · Zbl 0279.41030
[21] F. Nevanlinna, Zur Theorie der asymptotischen Potenzreihen, Ann. Acad. Sci. Fenn. Ser. A 12 (1918), no. 3, 1-81. · JFM 46.1463.01
[22] L. Bieberbach, Algemeine Theorie der Funktionen komplexer Argumente. Kapital 4, Jahrb. Forts. Math. 46 (1916-1918), no. 1.
[23] Alan D. Sokal, An improvement of Watson’s theorem on Borel summability, J. Math. Phys. 21 (1980), no. 2, 261 – 263. · Zbl 0441.40012 · doi:10.1063/1.524408
[24] Jorge Rezende, A note on Borel summability, J. Math. Phys. 34 (1993), no. 9, 4330 – 4339. · Zbl 0785.40005 · doi:10.1063/1.530003
[25] Harold Jeffreys, Asymptotic approximations, Clarendon Press, Oxford, 1962. · Zbl 0101.29002
[26] F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. · Zbl 0303.41035
[27] D. U. Kh. Gillam and V. P. Gurariĭ, On functions uniquely determined by their asymptotic expansions, Funktsional. Anal. i Prilozhen. 40 (2006), no. 4, 33 – 48, 111 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 40 (2006), no. 4, 273 – 284. · Zbl 1129.30024 · doi:10.1007/s10688-006-0044-x
[28] Herbert Buchholz, Die konfluente hypergeometrische Funktion mit besonderer Berücksichtigung ihrer Anwendungen, Ergebnisse der angewandten Mathematik. Bd. 2, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). Herbert Buchholz, The confluent hypergeometric function with special emphasis on its applications, Translated from the German by H. Lichtblau and K. Wetzel. Springer Tracts in Natural Philosophy, Vol. 15, Springer-Verlag New York Inc., New York, 1969.
[29] D. W. H. Gillam and V. P. Gurariĭ, Parametric representations in the theory of Laplace-Mellin transforms (in preparation).
[30] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. · Zbl 0920.33001
[31] Milton Abramowitz and Irene A. Stegun , Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. · Zbl 0171.38503
[32] E. T. Copson, An introduction to the theory of a complex variable, Oxford Univ. Press, 1962.
[33] Yudell L. Luke, The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. · Zbl 0193.01701
[34] Ch. Hermite, Sur une application du théorème de M. Mittag-Leffler, dans la théorie des fonctions, J. Crelle 92 (1882), 145-155. · JFM 14.0329.01
[35] Ernst Lindelöf, Le calcul des résidus et ses applications à la théorie des fonctions, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1989 (French). Reprint of the 1905 original. · JFM 37.0447.09
[36] Niels Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea Publishing Co., New York, 1965 (German).
[37] A. B. Olde Daalhuis, Hyperasymptotic expansions of confluent hypergeometric functions, IMA J. Appl. Math. 49 (1992), no. 3, 203 – 216. · Zbl 0781.33002 · doi:10.1093/imamat/49.3.203
[38] H. Poincaré, Sur les intégrales irrégulières, Acta Math. 8 (1886), no. 1, 295 – 344 (French). Des équations linéaires. · JFM 18.0273.02 · doi:10.1007/BF02417092
[39] F. W. J. Olver, On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 225 – 243. · Zbl 0173.33901
[40] F. W. J. Olver and F. Stenger, Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 244 – 249. · Zbl 0173.34001
[41] Frank Stenger, Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case, J. Res. Nat. Bur. Standards Sect. B 70B (1966), 167 – 186. · Zbl 0233.65048
[42] Frank Stenger, Error bounds for asymptotic solutions of differential equations. II. The general case, J. Res. Nat. Bur. Standards Sect. B 70B (1966), 187 – 210. · Zbl 0233.65049
[43] W. G. C. Boyd, Gamma function asymptotics by an extension of the method of steepest descents, Proc. Roy. Soc. London Ser. A 447 (1994), no. 1931, 609 – 630. · Zbl 0829.33001 · doi:10.1098/rspa.1994.0158
[44] M. V. Berry and C. J. Howls, Hyperasymptotics, Proc. Roy. Soc. London Ser. A 430 (1990), no. 1880, 653 – 668. · Zbl 0745.34052 · doi:10.1098/rspa.1990.0111
[45] M. V. Berry and C. J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. London Ser. A 434 (1991), no. 1892, 657 – 675. · Zbl 0764.30031 · doi:10.1098/rspa.1991.0119
[46] Jonathan M. Borwein and Robert M. Corless, Emerging tools for experimental mathematics, Amer. Math. Monthly 106 (1999), no. 10, 889 – 909. · Zbl 0980.68146 · doi:10.2307/2589743
[47] Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. · Zbl 0283.05001
[48] V. P. Gurariĭ and V. I. Matsaev, Stokes multipliers for systems of first-order linear ordinary differential equations, Dokl. Akad. Nauk SSSR 280 (1985), no. 2, 272 – 276 (Russian).
[49] V. P. Gurariĭ and V. I. Matsaev, The generalized Borel transform and Stokes multipliers, Teoret. Mat. Fiz. 100 (1994), no. 2, 173 – 182 (English, with English and Russian summaries); English transl., Theoret. and Math. Phys. 100 (1994), no. 2, 928 – 936 (1995). · Zbl 0857.34011 · doi:10.1007/BF01016755
[50] V. Gurarii, J. Steiner, V. Katsnelson, and V. Matsaev, How to use the Fourier transform in asymptotic analysis, Twentieth century harmonic analysis — a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 387 – 401. · Zbl 1089.34561
[51] V. Gurarii and D. Lucy, The Stokes structure and connection coefficients for the Airy equation, Mat. Fiz. Anal. Geom. 10 (2003), no. 3, 385 – 411. · Zbl 1077.34088
[52] T.-J. Stieltjes, Recherches sur quelques séries semi-convergentes, Ann. Sci. École Norm. Sup. (3) 3 (1886), 201 – 258 (French). · JFM 18.0197.01
[53] -, Sur le développement de \( \log \Gamma (a)\), J. Math. (4) 5 (1889), 425-444.
[54] N. G. de Bruijn, Asymptotic methods in analysis, Bibliotheca Mathematica. Vol. 4, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1958. · Zbl 0082.04202
[55] Оценки остатков в асимптотических разложениях, ”Зинатне”, Рига, 1986 (Руссиан).
[56] Z. X. Wang and D. R. Guo, Special functions, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. Translated from the Chinese by Guo and X. J. Xia. · Zbl 0724.33001
[57] J. G. van der Corput, Asymptotics. II. Elementary methods, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 139 – 150. · Zbl 0075.03802
[58] Robert Spira, Calculation of the gamma function by Stirling’s formula, Math. Comp. 25 (1971), 317 – 322. · Zbl 0221.65028
[59] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. · Zbl 0052.29502
[60] V. P. Gurariĭ and D. W. H. Gillam, Stokes and Gauss monodromic relations and the duality theorem, Preprint, Monash Univ., 2010 (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.