Jiménez Urroz, Jorge Klaus Friedrich Roth, Fields Medal 1958. (Klaus Friedrich Roth, Medalla Fields 1958.) (Spanish) Zbl 07733110 Gac. R. Soc. Mat. Esp. 26, No. 1, 189-214 (2023). MSC: 01A70 PDF BibTeX XML Cite \textit{J. Jiménez Urroz}, Gac. R. Soc. Mat. Esp. 26, No. 1, 189--214 (2023; Zbl 07733110) Full Text: Link
Asperó, David; Schindler, Ralf How many real numbers are there? (Wieviele reelle Zahlen gibt es?) (German) Zbl 07711103 Math. Semesterber. 70, No. 1, 1-15 (2023). MSC: 03-02 03E50 03E57 PDF BibTeX XML Cite \textit{D. Asperó} and \textit{R. Schindler}, Math. Semesterber. 70, No. 1, 1--15 (2023; Zbl 07711103) Full Text: DOI
Sanders, Sam On the computational properties of the uncountability of the real numbers. (English) Zbl 07691334 Ciabattoni, Agata (ed.) et al., Logic, language, information, and computation. 28th international workshop, WoLLIC 2022, Iași, Romania, September 20–23, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13468, 362-377 (2022). MSC: 03B70 PDF BibTeX XML Cite \textit{S. Sanders}, Lect. Notes Comput. Sci. 13468, 362--377 (2022; Zbl 07691334) Full Text: DOI arXiv
Sanders, Sam Reverse mathematics of the uncountability of \(\mathbb{R}\). (English) Zbl 07627935 Berger, Ulrich (ed.) et al., Revolutions and revelations in computability. 18th conference on computability in Europe, CiE 2022, Swansea, UK, July 11–15, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13359, 272-286 (2022). MSC: 68Qxx PDF BibTeX XML Cite \textit{S. Sanders}, Lect. Notes Comput. Sci. 13359, 272--286 (2022; Zbl 07627935) Full Text: DOI arXiv
Normann, Dag; Sanders, Sam On the uncountability of \(\mathbb{R}\). (English) Zbl 07620698 J. Symb. Log. 87, No. 4, 1474-1521 (2022). Reviewer: Jeffry L. Hirst (Boone) MSC: 03B30 03F35 03D65 03D55 03D30 PDF BibTeX XML Cite \textit{D. Normann} and \textit{S. Sanders}, J. Symb. Log. 87, No. 4, 1474--1521 (2022; Zbl 07620698) Full Text: DOI arXiv
Sanders, Sam Between Turing and Kleene. (English) Zbl 07551724 Artemov, Sergei (ed.) et al., Logical foundations of computer science. International symposium, LFCS 2022, Deerfield Beach, FL, USA, January 10–13, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13137, 281-300 (2022). MSC: 03B70 PDF BibTeX XML Cite \textit{S. Sanders}, Lect. Notes Comput. Sci. 13137, 281--300 (2022; Zbl 07551724) Full Text: DOI arXiv
Sanders, Sam Countable sets versus sets that are countable in reverse mathematics. (English) Zbl 07481740 Computability 11, No. 1, 9-39 (2022). MSC: 03Dxx PDF BibTeX XML Cite \textit{S. Sanders}, Computability 11, No. 1, 9--39 (2022; Zbl 07481740) Full Text: DOI arXiv
Veldman, Wim Intuitionism: an inspiration? (English) Zbl 07456158 Jahresber. Dtsch. Math.-Ver. 123, No. 4, 221-284 (2021). MSC: 03F55 00A30 03B20 54H25 PDF BibTeX XML Cite \textit{W. Veldman}, Jahresber. Dtsch. Math.-Ver. 123, No. 4, 221--284 (2021; Zbl 07456158) Full Text: DOI arXiv
Asperó, David; Schindler, Ralf Martin’s maximum\(^{++}\) implies Woodin’s axiom \((*)\). (English) Zbl 1496.03203 Ann. Math. (2) 193, No. 3, 793-835 (2021). Reviewer: Yair Hayut (Jerusalem) MSC: 03E57 03E55 03E50 03E60 PDF BibTeX XML Cite \textit{D. Asperó} and \textit{R. Schindler}, Ann. Math. (2) 193, No. 3, 793--835 (2021; Zbl 1496.03203) Full Text: DOI
García-Sandoval, J. P. Fractals and discrete dynamics associated to prime numbers. (English) Zbl 1490.39025 Chaos Solitons Fractals 139, Article ID 110029, 11 p. (2020). MSC: 39A33 39A21 11A41 28A80 PDF BibTeX XML Cite \textit{J. P. García-Sandoval}, Chaos Solitons Fractals 139, Article ID 110029, 11 p. (2020; Zbl 1490.39025) Full Text: DOI
Barabino, Benedetto; Salis, Sara Moving towards a more accurate level of inspection against fare evasion in proof-of-payment transit systems. (English) Zbl 1514.90130 Netw. Spat. Econ. 19, No. 4, 1319-1346 (2019). MSC: 90B25 90B20 91A10 PDF BibTeX XML Cite \textit{B. Barabino} and \textit{S. Salis}, Netw. Spat. Econ. 19, No. 4, 1319--1346 (2019; Zbl 1514.90130) Full Text: DOI
Podlubny, Igor Porous functions. (English) Zbl 1434.74038 Fract. Calc. Appl. Anal. 22, No. 6, 1502-1516 (2019). MSC: 74E20 26A33 76S05 PDF BibTeX XML Cite \textit{I. Podlubny}, Fract. Calc. Appl. Anal. 22, No. 6, 1502--1516 (2019; Zbl 1434.74038) Full Text: DOI
Steuding, Jörn On Liouville numbers: yet another application of functional analysis to number theory. (English) Zbl 1398.11106 Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer (ISBN 978-3-319-28202-2/hbk; 978-3-319-28203-9/ebook). 485-507 (2016). MSC: 11J81 01A55 54E52 PDF BibTeX XML Cite \textit{J. Steuding}, in: From arithmetic to zeta-functions. Number theory in memory of Wolfgang Schwarz. Cham: Springer. 485--507 (2016; Zbl 1398.11106) Full Text: DOI
Petrie, Bruce J. Leonhard Euler’s use and understanding of mathematical transcendence. (English. French summary) Zbl 1253.01008 Hist. Math. 39, No. 3, 280-291 (2012). Reviewer: Albert C. Lewis (Austin) MSC: 01A50 11J81 11-03 PDF BibTeX XML Cite \textit{B. J. Petrie}, Hist. Math. 39, No. 3, 280--291 (2012; Zbl 1253.01008) Full Text: DOI
Hinz, Andreas M. A straightened proof for the uncountability of \(\mathbb R\). (English) Zbl 1195.03047 Elem. Math. 65, No. 1, 26-28 (2010). MSC: 03E10 03-03 PDF BibTeX XML Cite \textit{A. M. Hinz}, Elem. Math. 65, No. 1, 26--28 (2010; Zbl 1195.03047) Full Text: DOI Link
Pejlare, Johanna Torsten Brodén’s work on the foundations of Euclidean geometry. (English) Zbl 1134.01012 Hist. Math. 34, No. 4, 402-427 (2007). Reviewer: Roman Duda (Wrocław) MSC: 01A60 01A70 51-02 51M05 PDF BibTeX XML Cite \textit{J. Pejlare}, Hist. Math. 34, No. 4, 402--427 (2007; Zbl 1134.01012) Full Text: DOI
Pawlak, Zdzisław; Skowron, Andrzej Rudiments of rough sets. (English) Zbl 1142.68549 Inf. Sci. 177, No. 1, 3-27 (2007). MSC: 68T37 PDF BibTeX XML Cite \textit{Z. Pawlak} and \textit{A. Skowron}, Inf. Sci. 177, No. 1, 3--27 (2007; Zbl 1142.68549) Full Text: DOI
Schindler, Ralf What do we need large cardinals for? (Wozu brauchen wir große Kardinalzahlen?) (German) Zbl 1093.03031 Math. Semesterber. 53, No. 1, 65-80 (2006). MSC: 03E55 03E50 PDF BibTeX XML Cite \textit{R. Schindler}, Math. Semesterber. 53, No. 1, 65--80 (2006; Zbl 1093.03031) Full Text: DOI
Czajko, Jakub Cantor and generalized continuum hypotheses may be false. (English) Zbl 1062.03514 Chaos Solitons Fractals 21, No. 2, 501-512 (2004). MSC: 03E50 PDF BibTeX XML Cite \textit{J. Czajko}, Chaos Solitons Fractals 21, No. 2, 501--512 (2004; Zbl 1062.03514) Full Text: DOI
Ferreirós, José On the relations between Georg Cantor and Richard Dedekind. (English) Zbl 0792.01031 Hist. Math. 20, No. 4, 343-363 (1993). Reviewer: I.Grattan-Guinness (Bengeo) MSC: 01A70 01A55 PDF BibTeX XML Cite \textit{J. Ferreirós}, Hist. Math. 20, No. 4, 343--363 (1993; Zbl 0792.01031) Full Text: DOI
Cooke, Roger Uniqueness of trigonometric series and descriptive set theory, 1870-1985. (English) Zbl 0773.01008 Arch. Hist. Exact Sci. 45, No. 4, 281-334 (1993). Reviewer: D.C.Struppa (Fairfax) MSC: 01A60 PDF BibTeX XML Cite \textit{R. Cooke}, Arch. Hist. Exact Sci. 45, No. 4, 281--334 (1993; Zbl 0773.01008) Full Text: DOI
Ullrich, Peter Weierstraß’s lecture on the “Introduction to the theory of analytical functions”. (Weierstraß’ Vorlesung zur “Einleitung in die Theorie der analytischen Funktionen”.) (German) Zbl 0761.01007 Arch. Hist. Exact Sci. 40, No. 2, 143-172 (1989). Reviewer: D.Laugwitz (Darmstadt) MSC: 01A55 26-03 30-03 PDF BibTeX XML Cite \textit{P. Ullrich}, Arch. Hist. Exact Sci. 40, No. 2, 143--172 (1989; Zbl 0761.01007) Full Text: DOI
Grattan-Guinness, I. How Bertrand Russell discovered his paradox. (English) Zbl 0379.01010 Hist. Math. 5, 127-137 (1978). MSC: 01A60 03A05 03E50 01A55 PDF BibTeX XML Cite \textit{I. Grattan-Guinness}, Hist. Math. 5, 127--137 (1978; Zbl 0379.01010) Full Text: DOI
Börger, Reinhard; Tholen, Walter Cantors Diagonalprinzip für Kategorien. (German) Zbl 0363.04002 Math. Z. 160, 135-138 (1978). MSC: 03-01 18A20 18A25 18A30 PDF BibTeX XML Cite \textit{R. Börger} and \textit{W. Tholen}, Math. Z. 160, 135--138 (1978; Zbl 0363.04002) Full Text: DOI EuDML
Stäckel, P. Arithmetic properties of analytic functions. (Arithmetische Eigenschaften analytischer Funktionen.) (German) JFM 33.0432.02 Acta Math. 25, 371-384 (1902). Reviewer: Landsberg, Prof. (Breslau) MSC: 14H05 PDF BibTeX XML Cite \textit{P. Stäckel}, Acta Math. 25, 371--384 (1902; JFM 33.0432.02) Full Text: DOI