The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables.(English)Zbl 1136.70313

Summary: In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [M. Efroimsky and P. Goldreich, J. Math. Phys. 44, No. 12, 5958–5977 (2003; Zbl 1063.70008); Astron. Astrophys. 415, No. 3, 1187–1199 (2004; Zbl 1125.70307); M. Efroimsky, Celest. Mech. Dyn. Astron. 91, No. 1-2, 75–108 (2005; Zbl 1116.70023 ); Ann. N. Y. Acad. Sci. 1065, 346–374 (2006; Zbl 1136.70312)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a noninertial frame), a mere amendment of the Hamiltonian makes the equations yield nonosculating Andoyer elements. To make them osculating, extra terms should be added to the equations (but then the equations will no longer be canonical). Calculations in nonosculating variables are mathematically valid, but their physical interpretation is not easy. Nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit. (A nonosculating $$i$$ may differ much from the real inclination of the orbit, given by the osculating i.) Nonosculating Andoyer elements correctly describe perturbed attitude, but their interconnection with the angular velocity is a nontrivial issue. The Kinoshita-Souchay theory tacitly employs nonosculating Andoyer elements. For this reason, even though the elements are introduced in a precessing frame, they nevertheless return the inertial velocity, not the velocity relative to the precessing frame. To amend the Kinoshita-Souchay theory, we derive the precessing-frame-related directional angles of the angular velocity relative to the precessing frame. The loss of osculation should not necessarily be considered a flaw of the Kinoshita-Souchay theory, because in some situations it is the inertial, not the relative, angular velocity that is measurable [K. U. Schreiber et al., J. Geophys. Res. 109, B06405 (2004); L. Petrov, Astron. Astrophys. 467, 359–369 (2007)]. Under these circumstances, the Kinoshita-Souchay formulae for the angular velocity should be employed (as long as they are rightly identified as the formulae for the inertial angular velocity).

MSC:

 70F15 Celestial mechanics 70E20 Perturbation methods for rigid body dynamics 70H05 Hamilton’s equations 70M20 Orbital mechanics
Full Text:

References:

 [1] Abdullah K. and Albouy A. (2001). On a strange resonance noticed by M. Herman. Regular and Chaotic Dynamics 6: 421–432 · Zbl 1006.37034 [2] Andoyer H. (1923). Cours de Mécanique Céleste. Gauthier-Villars, Paris [3] Boccaletti D. and Pucacco G. (2002). Theory of Orbits. Volume 2: Perturbative and Geometrical Methods, Chapter 8. Springer Verlag, Heidelberg · Zbl 0927.70002 [4] Brouwer D. and Clemence G.M. (1961). Methods of Celestial Mechanics. Chapter XI. Academic Press, NY & [5] Deprit A. (1969). Canonical transformations depending on a small parameter. Celest. Mech. 1: 12–30 · Zbl 0172.26002 [6] Deprit A. and Elipe A. (1993). Complete reduction of the Euler-Poinsot problem. J Astronaut Sci 41(4): 603–628 [7] Efroimsky, M.: Equations for the orbital elements. Hidden symmetry. Preprint no 1844 of the Institute of Mathematics and its Applications, University of Minnesota (2002a) http://www.ima.umn.edu/ preprints/feb02/feb02.html [8] Efroimsky, M.: The implicit gauge symmetry emerging in the n-body problem of celestial mechanics (2002b) astro-ph/0212245 [9] Efroimsky M. and Goldreich P. (2003). Gauge symmetry of the N-body problem in the Hamilton–Jacobi approach. J. Math. Phys. 44: 5958–5977. astro-ph/0305344 · Zbl 1063.70008 [10] Efroimsky M. and Goldreich P. (2004). Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415: 1187–1199. astro-ph/0307130 · Zbl 1125.70307 [11] Efroimsky, M.: On the theory of canonical perturbations and its application to Earth rotation. Talk at the conference Journées 2004: Systèmes de référence spatio-temporels, l’Observatoire de Paris, 20–22 septembre (2004) astro-ph/0409282 [12] Efroimsky M. (2005). Long-term evolution of orbits about a precessing oblate planet. The case of uniform precession. Celest. Mech. Dynam. Astron. 91: 75–108. astro-ph/0408168 · Zbl 1116.70023 [13] Efroimsky M. (2006). Gauge freedom in orbital mechanics. Ann New York Acad Sci. 1065: 346–374. astro-ph/0603092 · Zbl 1136.70312 [14] Escapa A., Getino J. and Ferrándiz J. (2001). Canonical approach to the free nutations of a three-layer Earth model. J. Geophys. Res. 106(B6): 11387–11397 [15] Escapa A., Getino J. and Ferrándiz J. (2002). Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. Astron Astrophys. 389: 1047–1054 [16] Fukushima T. and Ishizaki H. (1994). Elements of spin motion. Celest. Mech. Dyn. Astron. 59: 149–159 · Zbl 0810.70006 [17] Getino J. and Ferrándiz J. (1990). A Hamiltonian theory for an elastic earth. Canonical variables and kinetic energy. Celest. Mech. Dyn. Astron. 49: 303–326 · Zbl 0737.73073 [18] Getino J. and Ferrándiz J. (1994). A rigorous Hamiltonian approach to the rotation of elastic bodies. Celest. Mech. Dyn. Astron. 58: 277–295 · Zbl 0837.70013 [19] Giacaglia G.E.O. and Jefferys W.H. (1971). Motion of a space station. I. Celest. Mech. 4: 442–467 · Zbl 0229.70029 [20] Goldreich P. (1965). Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70: 5–9 [21] Goldstein H. (1981). Classical Mechanics. Addison-Wesley, Reading MA · Zbl 0043.18001 [22] Gurfil, P., Elipe, A., Tangren, W., Efroimsky, M.: The Serret-Andoyer formalism in rigit-body dynamics: I. Symmetries and perturbations. Submitted to Regular and Chaotic Dynamics (2007) astro-ph/0607201 · Zbl 1229.37112 [23] Hori G.-I. (1966). Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn 18: 287–296 [24] Kholshevnikov, K.V.: Lie transformations in celestial mechanics. In: Astronomy and Geodesy. Thematic Collection of Papers, 4, Issue 4, pp. 21–45. Published by the Tomsk State University Press, Tomsk, Russia (1973) (in Russian) [25] Kholshevnikov, K.V.: Asymptotic Methods of Celestial Mechanics, Chapter 5. Leningrad State University Press, St.Petersburg, Russia (1985) /in Russian/ [26] Kinoshita H. (1972). First-order perturbations of the two finite-body problem. Pub. Astron. Soc. Jpn. 24: 423–457 [27] Kinoshita H. (1977). Theory of the rotation of the rigid Earth. Celest. Mech. 15: 277–326 [28] Kinoshita H., Nakajima K., Kubo Y., Nakagawa I., Sasao T. and Yokoyama K. (1978). Note on nutation in ephemerides. Publi. Int. Latitude Observat. Mizusawa XII(1): 71–108 [29] Kinoshita H. and Souchay J. (1990). The theory of the nutation for the rigid-Earth model at the second order. Celest. Mech. Dyn. Astron. 48: 187–265 · Zbl 0756.70008 [30] Laskar J. and Robutel J. (1993). The chaotic obliquity of the planets. Nature 361: 608–612 [31] Lieske J.H., Lederle T., Fricke W. and Morando B. (1977). Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants. Astron. Astrophys. 58: 1–16 [32] Mysen E. (2004). Rotational dynamics of subsolar sublimating triaxial comets. Planet. Space Sci. 52: 897–907 [33] Mysen E. (2006). Canonical rotation variables and non-Hamiltonian forces: solar radiation pressure effects on asteroid rotation. Monthly Notices Roy. Astron. Soc. 372: 1345–1350 [34] Peale S.J. (1973). Rotation of solid bodies in the solar system. Rev. Geophys. Space Phy. 11: 767–793 [35] Peale S.J. (1976). Excitation and relaxation of the wobble, precession and libration of the Moon. J Geophy. Res. 81: 1813–1827 [36] Petrov L. (2007). The empirical Earth-rotation model from VLBI observations. Astron Astrophys. 467: 359–369 [37] Plummer H.C. (1918). An Introductory Treatise on Dynamical Astronomy. Cambridge University Press, UK [38] Poincaré, H. Sur une forme nouvelle des équations du problème des trois corps. Bull. Astron. 14, 53–67 (1897). For modern edition see: OEuvres de Henri Poincaré, Tome VII, pp. 500–511. Gauthier-Villars, Paris (1950) [39] Radau, R.: Sur la rotation des corps solides. Annales de l’Ecole Normale Supérieure. 1resérie. Tome 6, 233–250 (1869) http://www.numdam.org/item?id=ASENS_1869_1_6_233_0 · JFM 02.0724.02 [40] Richelot, F.J.: Eine neue Loesung des Problemes der Rotation eines festen Körpers um einen Punkt. Abhandlungen der Königlichen Preu{$$\beta$$}ischen Akademie der Wissenschaften zu Berlin. Math., 1–60 (1850) [41] Seidelmann, P.K. (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley CA [42] Serret J.A. (1866). Mémoire sur l’emploi de la méthode de la variation des arbitraires dans la théorie des mouvements de rotation. Mémoires de l’Academie des Sciences de Paris 55: 585–616 [43] Schreiber K.U., Velikoseltsev A., Rothacher M., Klügel T., Stedman G.E. and Wiltshire D.L. (2004). Direct measurements of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res. 109: B06405 [44] Souchay J., Losley B., Kinoshita H. and Folgueira M. (1999). Corrections and new developments in rigid Earth nutation theory. III. Final tables ”REN-2000” including crossed-nutation and spin–orbit coupling effects. Astron. Astrophys. Suppl. 135, 111–131 [45] Synge J.L. and Griffith B.A. (1959). Principles of Mechanics. McGraw-Hill, NY · Zbl 0061.41601 [46] Tisserand F. (1889). Traité de mécanique Céleste. Gauthier-Villars, Paris [47] Touma J. and Wisdom J. (1993). The chaotic obliquity of Mars. Science 259(5099): 1294–1297 [48] Touma J. and Wisdom J. (1994). Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107: 1189–1202 [49] Zanardi M. and Vilhena de Moraes R. (1999). Analytical and semi-analytical analysis of an artificial satellite’s rotational motion. Celest. Mech. Dyn. Astron. 75: 227–250 · Zbl 0971.70024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.