×

Influence of local cubic anisotropy on the transition towards an equipartition regime in a 3D texture-less random elastic medium. (English) Zbl 1524.74030

Summary: At long lapse times in randomly fluctuating media with macroscopic isotropy (texture-less media), the energy of elastic waves is equipartitioned between compressional (P) and shear (S) waves. This property is independent of the local isotropy or anisotropy of the heterogeneous constitutive tensor and of the type of source. However the local symmetry of the constitutive tensor does influence the rate of convergence to equipartition and this paper discusses the precise influence of local anisotropy on the time required to reach equipartition. More particularly, a randomly-fluctuating medium is considered, whose behavior is statistically isotropic, and locally cubic. After calculating all the differential and total scattering cross-sections in that case, an analytical formula is derived for the rate of convergence to the equipartition regime, function of the second-order statistics of the mechanical parameter fields (bulk and shear moduli and anisotropy parameter). The local anisotropy is shown to influence strongly that transition rate, with a faster transition when the fluctuations of the anisotropy parameter are positively correlated to those of the shear modulus. A numerical model is constructed to illustrate numerically these results. Since the asymptotic regime of equipartition cannot be simulated directly because it would require too large a computational domain, boundaries are introduced and mechanical properties are chosen so as to minimize their influence on equipartition.

MSC:

74A40 Random materials and composite materials
35L53 Initial-boundary value problems for second-order hyperbolic systems
35Q74 PDEs in connection with mechanics of deformable solids
74E10 Anisotropy in solid mechanics

Software:

RegSEM
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Chandrasekhar, S., Radiative Transfer (1960), Dover Publications · Zbl 0037.43201
[2] Weaver, R. L., Diffusivity of ultrasound in polycrystals, J. Mech. Phys. Solids, 38, 1, 55-86 (1990) · Zbl 0706.73028
[3] Zeng, Y., Theory of scattered P-wave and S-wave energy in a random isotropic scattering medium, Bull. Seismol. Soc. Am., 83, 4, 1264-1276 (1993)
[4] Sato, H., Multiple isotropic scattering model including P-S conversions for the seismogram envelope formation, Geophys. J. Int., 117, 2, 487-494 (1994)
[5] Turner, J. A.; Weaver, R. L., Radiative transfer and multiple scattering of diffuse ultrasound in polycrystalline media, J. Acoust. Soc. Am., 96, 6, 3675-3683 (1994)
[6] Ryzhik, L.; Papanicolaou, G.; Keller, J. B., Transport equations for elastic and other waves in random media, Wave Motion, 24, 4, 327-370 (1996) · Zbl 0954.74533
[7] Margerin, L.; Campillo, M.; van Tiggelen, B. A., Monte Carlo simulation of multiple scattering of elastic waves, J. Geophys. Res., 105, B4, 7873-7892 (2000)
[8] Turner, J. A., Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials, J. Acoust. Soc. Am., 106, 2, 541-552 (1999)
[9] Przybilla, J.; Korn, M., Monte Carlo simulation of radiative energy transfer in continuous elastic random media – three-component envelopes and numerical validation, Geophys. J. Int., 173, 2, 566-576 (2008)
[10] Gaebler, P. J.; Eulenfeld, T.; Wegler, U., Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory, Geophys. J. Int., 201, 1471-1481 (2015)
[11] Sanborn, C. J.; Cormier, V. F.; Fitzpatrick, M., Combined effects of deterministic and statistical structure on high-frequency regional seismograms, Geophys. J. Int., 210, 1143-1159 (2017)
[12] Shapiro, N. M.; Campillo, M.; Margerin, L.; Singh, S. K.; Kostoglodov, V.; Pacheco, J., The energy partitioning and the diffusive character of the seismic coda, Bull. Seismol. Soc. Am., 90, 3, 655-665 (2000)
[13] Hennino, R.; Trégourès, N.; Shapiro, N. M.; Margerin, L.; Campillo, M.; Tiggelen, B. A.V.; Weaver, Observation of equipartition of seismic waves, Phys. Rev. Lett., 86, 15, 3447 (2001)
[14] Weaver, R.; Lobkis, O., Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87, 13, Article 134301 pp. (2001)
[15] Campillo, M.; Paul, A., Long-range correlations in the diffuse seismic coda, Science, 299, 5606, 547-549 (2003)
[16] Saito, T.; Sato, H.; Fehler, M.; Ohtake, M., Simulating the envelope of scalar waves in 2D random media having power-law spectra of velocity fluctuation, Bull. Seismol. Soc. Am., 93, 1, 240-252 (2003)
[17] Borcea, L.; Papanicolaou, G.; Tsogka, C., Coherent interferometric imaging in clutter, Geophysics, 71, 4, SI165-SI175 (2006)
[18] Kawase, H.; Sánchez-Sesma, F. J.; Matsushima, S., The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves, Bull. Seismol. Soc. Am., 101, 5, 2001-2014 (2011)
[19] Sánchez-Sesma, F. J.; Weaver, R. L.; Kawase, H.; Matsushima, S.; Luzón, F.; Campillo, M., Energy partitions among elastic waves for dynamic surface loads in a semi-infinite solid, Bull. Seismol. Soc. Am., 101, 4, 1704-1709 (2011)
[20] Sato, H.; Fehler, M.; Maeda, T., Seismic Wave Propagation and Scattering in the Heterogeneous Earth, SpringerLink : Bücher (2012), Springer Berlin Heidelberg
[21] Grigorev, O. A.; Shemergor, T. D., Propagation of ultrasonic waves in polycrystals of cubic symmetry with allowance for multiple scattering, J. Appl. Math. Mech., 44, 2, 217-223 (1980) · Zbl 0461.73014
[22] Hirsekorn, S., The scattering of ultrasonic waves by polycrystals, J. Acoust. Soc. Am., 72, 3, 1021-1031 (1982) · Zbl 0513.73035
[23] Stanke, F. E.; Kino, G. S., A unified theory for elastic wave propagation in polycrystalline materials, J. Acoust. Soc. Am., 75, 3, 665-681 (1984) · Zbl 0544.73040
[24] Guo, C. B.; Höller, P.; Goebbels, K., Scattering of ultrasonic waves in anisotropic polycrystalline metals, Acustica, 59, 2, 112-120 (1985)
[25] Engler, O.; Randle, V., Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping (2009), CRC Press
[26] Baydoun, I.; Savin, E.; Cottereau, R.; Clouteau, D.; Guilleminot, J., Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media, Wave Motion, 51, 8, 1325-1348 (2014) · Zbl 1456.74086
[27] Ta, Q.; Clouteau, D.; Cottereau, R., Modeling of random anisotropic elastic media and impact on wave propagation, Eur. J. Comput. Mech., 19, 1-3, 241-253 (2010) · Zbl 1426.74170
[28] Shiomi, K.; Sato, H.; Ohtake, M., Broad-band power-law spectra of well-log data in Japan, Geophys. J. Int., 130, 57-64 (1997)
[29] Voigt, W., Lehrbuch der Kristallphysik (1928), Teubner: Teubner Berlin · JFM 54.0929.03
[30] Chadwick, P.; Vianello, M.; Cowin, S. C., A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids, 49, 11, 2471-2492 (2001) · Zbl 1017.74009
[31] Guilleminot, J.; Soize, C., On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, J. Elasticity, 111, 2, 109-130 (2013) · Zbl 1273.74007
[32] Klimeš, L., Correlation functions of random media, Pure Appl. Geophys., 159, 7-8, 1811-1831 (2002)
[33] Khazaie, S.; Cottereau, R.; Clouteau, D., Influence of the spatial correlation structure of an elastic random medium on its scattering properties, J. Sound Vib., 370, 132-148 (2016)
[34] Bal, G.; Pinaud, O., Accuracy of transport models for waves in random media, Wave Motion, 43, 7, 561-578 (2006) · Zbl 1231.78013
[35] Weaver, R. L., On diffuse waves in solid media, J. Acoust. Soc. Am., 71, 6, 1608-1609 (1982)
[36] Papanicolaou, G.; Ryzhik, L.; Keller, J. B., Stability of the P to S energy ratio in the diffusive regime, Bull. Seismol. Soc. Am., 86, 4, 1107-1115 (1996)
[37] Turner, J. A., Scattering and diffusion of seismic waves, Bull. Seismol. Soc. Am., 88, 1, 276-283 (1998)
[38] Margerin, L., Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media, Geophys. J. Int., 192, 1, 326-345 (2013)
[39] Trégourès, N. P.; van Tiggelen, B. A., Generalized diffusion equation for multiple scattered elastic waves, Waves Random Media, 12, 1, 21-38 (2002) · Zbl 1142.74350
[40] Margerin, L.; van Tiggelen, B. A.; Campillo, M., Effect of absorption on energy partition of elastic waves in the seismic coda, Bull. Seismol. Soc. Am., 91, 3, 624-627 (2001)
[41] Nakahara, H.; Yoshimoto, K., Radiative transfer of elastic waves in two-dimensional isotropic scattering media: Semi-analytical approach for isotropic source radiation, Earth Planets Space, 63, 6, 459-468 (2011)
[42] Cupillard, P.; Delavaud, E.; Burgos, G.; Festa, G.; Vilotte, J.-P.; Capdeville, Y.; Montagner, J.-P., RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale, Geophys. J. Int., 188, 3, 1203-1220 (2012)
[43] R. Cottereau, D. Clouteau, J.-P. Vilotte, R. Madariaga, Validation of software for 3D propagation of waves in heterogeneous and random media, in: 9th US National Congress on Computational Mechanics, USNCCM, San Francisco, USA, 2007.
[44] Khazaie, S.; Cottereau, R.; Clouteau, D., Numerical observation of the equipartition regime in a 3D random elastic medium, and discussion of the limiting parameters, Comput. Geosci., 102, 56-67 (2017)
[45] Panunzio, A.; Cottereau, R.; Puel, G., Large scale random fields generation using localized Karhunen-Loève expansion, Adv. Model. Simul. Eng. Sci., 5, 20, 1-21 (2018)
[46] Shinozuka, M.; Deodatis, G., Simulation of stochastic processes by spectral representation, Appl. Mech. Rev., 44, 4, 191-204 (1991)
[47] de Carvalho Paludo, L.; Bouvier, V.; Cottereau, R., Scalable parallel scheme for sampling of Gaussian random fields over large domains, Internat. J. Numer. Methods Engrg., 117, 8, 845-859 (2019)
[48] Bal, G.; Komorowski, T.; Ryzhik, L., Self-averaging of Wigner transforms in random media, Comm. Math. Phys., 242, 1, 81-135 (2003) · Zbl 1037.35108
[49] Graff, K. F., Wave Motion in Elastic Solids (2012), Courier Corporation
[50] Aki, K.; Richards, P. G., Quantitative Seismology (2002)
[51] Margerin, L., Attenuation, transport and diffusion of scalar waves in textured random media, Tectonophysics, 416, 1-4, 229-244 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.