×

Deformation of piecewise differentiable curves in constrained variational calculus. (English) Zbl 1380.49044

Summary: A survey of the geometric tools involved in the study of constrained variational calculus is presented. The central issue is the characterization of the admissible deformations of piecewise differentiable sections of a fibre bundle \(\mathcal{V}_{n + 1} \rightarrow \mathbb{R}\), in the presence of arbitrary nonholonomic constraints. Asynchronous displacements of the corners are explicitly considered. The coordinate-independent representation of the variational equation and the associated concepts of infinitesimal control and absolute time derivative are reviewed. In the resulting algebraic environment, every admissible section is assigned a corresponding abnormality index, identified with the co-rank of a suitable linear map. Sections with vanishing index are called normal. A section is called ordinary if every solution of the variational equation vanishing at the endpoints is tangent to some finite deformation with fixed endpoints. The interplay between abnormality index and ordinariness – in particular the fact that every normal evolution is automatically an ordinary one – is discussed.

MSC:

49M30 Other numerical methods in calculus of variations (MSC2010)
65K10 Numerical optimization and variational techniques
53B05 Linear and affine connections
70Q05 Control of mechanical systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bolza, O., Lectures on the Calculus of Variations (1904), The University of Chicago Press: The University of Chicago Press Chicago · JFM 35.0373.01
[2] Tonelli, L., Fondamenti di Calcolo delle Variazioni I e II (1921), Nicola Zanichelli: Nicola Zanichelli Bologna · JFM 48.0583.01
[3] Caratheodory, C., Calculus of Variations and Partial Differential Equations of First Order (1935), Chelsea Publishing Company: Chelsea Publishing Company New York: B.G. Teubner: Chelsea Publishing Company: Chelsea Publishing Company New York: B.G. Teubner Berlin, originally published as Variationsrechnung und Partielle Differentialgleichungen erster Ordnung by
[4] Bliss, G. A., Lectures on the Calculus of the Variations (1946), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0063.00459
[5] Morse, M., Variational Analysis (1973), John Wiley & Sons: John Wiley & Sons New York, London, Sydney, Toronto · Zbl 0255.49002
[6] Gelfand, I. M.; Fomin, S. V., Calculus of Variations (1963), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0127.05402
[7] Rund, H., The Hamilton-Jacobi Theory in the Calculus of Variations (1966), Van Nostrand: Van Nostrand London · Zbl 0141.10602
[8] Giaquinta, M.; Hildebrandt, S., Calculus of Variations I, II (1996), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0853.49001
[9] Sagan, H., Introduction to the Calculus of Variations (1969), McGraw-Hill Book Company: McGraw-Hill Book Company New York
[10] Hestenes, M. R., Calculus of Variations and Optimal Control Theory (1966), Wiley: Wiley New York, London, Sydney · Zbl 0173.35703
[11] Griffiths, P., Exterior Differential Systems and the Calculus of Variations (1983), Birkhäuser: Birkhäuser Boston · Zbl 0512.49003
[12] Hsu, L., Calculus of variations via the Griffiths formalism, J. Differ. Geom., 36, 551-589 (1992) · Zbl 0768.49014
[13] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surv. Monogr., vol. 91 (2000), AMS
[14] Krupková, O., The Geometry of Ordinary Variational Equations (1997), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0897.58024
[15] Agrachev, A. A.; Sachov, Yu. L., Control Theory from the Geometric Viewpoint (2004), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 1062.93001
[16] Gracia, X.; Marin-Solano, J.; Munoz-Lecanda, M. C̃., Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51, 127-147 (2003) · Zbl 1038.37052
[17] Barbero-Linan, M.; Echeverria-Enriquez, A.; Martin de Diego, D.; Munoz-Lecanda, M. C̃.; Roman-Roy, N., Skinner-Rusk unified formalism for optimal control systems and applications, J. Phys. A, Math. Theor., 40, 12071-12093 (2007) · Zbl 1126.70011
[18] Barbero-Linan, M.; Munoz-Lecanda, M. C̃., Constraint algorithm for extremals in optimal control problems, Int. J. Geom. Methods Mod. Phys., 06, 1221 (2009) · Zbl 1181.49021
[19] de Leon, M.; Jimenez, F.; Martin de Diego, D., Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings, J. Phys. A, Math. Theor., 45, 1-29 (2012) · Zbl 1288.37014
[20] Massa, E.; Bruno, D.; Luria, G.; Pagani, E., Geometric constrained variational calculus. I: piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys., 12, Article 1550061 pp. (2015) · Zbl 1319.49031
[21] Massa, E.; Bruno, D.; Luria, G.; Pagani, E., Geometric constrained variational calculus. II: the second variation (Part I), Int. J. Geom. Methods Mod. Phys., 13, Article 1550132 pp. (2016) · Zbl 1345.49025
[22] Massa, E.; Luria, G.; Pagani, E., Geometric constrained variational calculus. III: the second variation (Part II), Int. J. Geom. Methods Mod. Phys., 13, Article 1650038 pp. (2016) · Zbl 1345.49026
[23] Hurewicz, W., Lectures on Ordinary Differential Equations (1958), John Wiley & Sons, Inc., and MIT Press: John Wiley & Sons, Inc., and MIT Press New York and Cambridge, MA · Zbl 0082.29702
[24] Warner, F. W., Foundations of Differential Manifolds and Lie Groups (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.