×

About the oscillatory possibilities of the dynamical systems. (English) Zbl 1417.37089

Summary: This paper may be ultimately described as an attempt to make feasible the evolutionary emergence of novelty in a supposedly deterministic world whose behavior is associated with that of the mathematical dynamical systems. It means philosophical implications that the paper needs to address, subsidiarily at least. The work was motivated by the observation of complex oscillatory behaviors in a family of physical devices and related mathematical models, for which there is no known explanation in the mainstream of nonlinear dynamics. The paper begins by describing a nonlinear mechanism of oscillatory mode mixing explaining such behaviors and, through its generalization to richer nonlinear vector fields, establishes a generic dynamical scenario with extraordinary oscillatory possibilities, including expansive growing scalability toward high dimensionalities and through nonlinear multiplicities. The scenario is then used to tentatively explain complex oscillatory behaviors observed in nature like those of turbulent fluids and living brains. Finally, by considering the scenario as a dynamic substrate underlying generic aspects of both the functioning and the genesis of complex behaviors in a supposedly deterministic world, a theoretical framework covering the evolutionary development of structural transformations in the time evolution of that world is built up. The analysis includes attempts to clarify the roles of items often invoked apropos of pathways to complexity like chaos, pattern formation, externally-driven bifurcations, hysteresis, irreversibility, and order through random fluctuations. Thermodynamics, as the exclusive field of physics in providing generic evolutionary criteria, is briefly and synthetically considered from the dynamical systems point of view by trying to elucidate its explanatory possibilities concerning the emergence of complexity. Quantum mechanics gets involved in two different ways: the lack of a dynamical systems perspective in the currently accepted interpretations of that fundamental theory and the indeterminacy issues, and both questions are discussed to point out their consequences. The reported evolutionary framework is far from a complete theory but includes both the elements and the skeleton for its tentative building within feasible philosophical grounds. In the lack of alternatives, one should imagine how it could be one of such theories and how it could be built, in order to evaluate our approach. In particular, notice that our approach is to a theory of nothing of the physical world but of the underlying reasons for its ordered and creative functioning, which we interpret to be independent of that world, i.e., a theory of what the Catalan expression “l’entrellat del món” describes so well.

MSC:

37C10 Dynamics induced by flows and semiflows
37H10 Generation, random and stochastic difference and differential equations
37N99 Applications of dynamical systems
70K25 Free motions for nonlinear problems in mechanics
70K70 Systems with slow and fast motions for nonlinear problems in mechanics
70J30 Free motions in linear vibration theory
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
76F06 Transition to turbulence
97M50 Physics, astronomy, technology, engineering (aspects of mathematics education)

Software:

channelflow
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Jackson, E. A., Perspectives of Nonlinear Dynamics (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0701.70001
[2] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[3] Kaneko, K., Spatiotemporal intermittency in coupled map lattices, Progr. Theoret. Phys., 74, 1033-1044 (1985) · Zbl 0979.37505
[4] Wolfram, S., Theory and Applications of Cellular Automata (1986), World Scientific: World Scientific Singapore
[5] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Math. Phys., 65, 851-1112 (1993) · Zbl 1371.37001
[6] Drazin, P. G., Introduction to Hydrodinamic Stability (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0997.76001
[7] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0890.76001
[8] Bohr, T.; Jensen, M. H.; Paladin, G.; Vulpiani, A., Dynamical Systems Approach to Turbulence (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0933.76002
[9] Gollub, J. P.; Swinney, H. L., Onset of turbulence in a rotating fluid, Phys. Rev. Lett., 35, 927-930 (1975)
[10] Chaté, H.; Manneville, P., Transition to turbulence via spatio-temporal intermittency, Phys. Rev. Lett., 58, 112-115 (1987)
[11] Kaneko, K., Pattern dynamics in spatio-temporal chaos, Physica D, 34, 1-41 (1987)
[12] Kaneko, K.; Tsuda, I., Chaotic itinerancy, Chaos, 14, 926-936 (2003) · Zbl 1080.37531
[13] Landau, L. D., On the problem of turbulence, C. R. Dokl. Acad. Sci. USSR, 44, 311-314 (1944), reproduced in L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon, London, 1959 · Zbl 0063.03437
[14] Hopf, E., A mathematical example displaying features of turbulence, Comm. Pure Appl. Math., 1, 303-322 (1948) · Zbl 0031.32901
[15] Newhouse, S.; Ruelle, D.; Takens, F., Occurrence of strange axiom A attractors near quasi periodic flows on \(T^m, m \geq 3\), Comm. Math. Phys., 64, 35-40 (1978) · Zbl 0396.58029
[16] Rius, J.; Figueras, M.; Herrero, R.; Pi, F.; Farjas, J.; Orriols, G., Full instability behavior of \(N\)-dimensional dynamical systems with a one-directional nonlinear vector field, Phys. Rev. E, 62, 333-348 (2000) · Zbl 1055.76520
[17] Rius, J.; Figueras, M.; Herrero, R.; Farjas, J.; Pi, F.; Orriols, G., \(N\)-dimensional dynamical systems exploiting instabilities in full, Chaos, 10, 760-770 (2000) · Zbl 1055.76520
[18] (Yates, F. E., Self-Organizing Systems. The Emergence of Order (1987), Plenum Press: Plenum Press New York)
[19] Ashby, W. R., Principles of the self-organizing system, (Von Foerster, H.; Zopf, G. W., Principles of Self-Organization (1962), Pergamon Press: Pergamon Press London), 255-278
[20] Eigen, M.; Schuster, P., The Hypercycle: A Principle of Natural Self-Organization (1979), Springer: Springer New York
[21] Kauffman, S. A., The Origins of Order (1993), Oxford University Press: Oxford University Press New York
[22] Ashby, W. R., Principles of the self-organizing dynamic system, J. Gen. Psychol., 37, 125-128 (1947)
[23] Thompson, D., On Growth and Form (1942), Cambridge University Press: Cambridge University Press Cambridge
[24] Fontana, W.; Buss, L., The arrival of the fittest: toward a theory of biological organization, Bull. Math. Biol., 56, 1-64 (1994) · Zbl 0798.92021
[25] Kaneko, K.; Tsuda, I., Complex Systems: Chaos and Beyond (2001), Springer: Springer Berlin
[26] Ruelle, D., Turbulence, Strange Attractors, and Chaos (1995), World Scientific: World Scientific Singapore · Zbl 0922.76009
[27] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0515.34001
[28] Shilnikov, L. P.; Shilnikov, A. L.; Turaev, D. V.; Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics (2001), World Scientific: World Scientific Singapore · Zbl 0941.34001
[29] Swiney, H. L.; Gollub, J. P., Hydrodinamic Instabilities and the Transition to Turbulence (1981), Springer-Verlag: Springer-Verlag Berlin
[30] Kaneko, K., Collapse of Tori and Genesis of Chaos in Dissipative Systems (1986), World Scientific: World Scientific Singapore · Zbl 0647.58032
[31] Grebogi, C.; Ott, E.; Yorke, J. A., Attractors on an \(N\)-torus, Physica D, 15, 354-373 (1985) · Zbl 0577.58023
[32] Cumming, A.; Linsay, P. S., Deviations from universality in the transition from quasiperiodicity to chaos, Phys. Rev. Lett., 59, 1633-1636 (1987)
[33] Wang, X.-J.; Nicolis, G., Bifurcation phenomena in coupled chemical oscillators, Physica D, 26, 140-155 (1987) · Zbl 0612.58033
[34] Gaspard, P., Local birth of homoclinic chaos, Physica D, 62, 94-122 (1993) · Zbl 0786.34051
[35] Wittenberg, R. W.; Holmes, P., The limited effectiveness of normal forms, Physica D, 100, 1-40 (1997) · Zbl 0893.34027
[36] (Steriade, M.; Jones, E. G.; McCormick, D., Thalamus (1997), Elsevier: Elsevier Oxford)
[37] Rinzel, J.; Ermentrout, G., Analysis of neural excitability and oscillations, (Koch, C.; Segev, I., Methods in Neuronal Modeling (1998), MIT Press: MIT Press Cambridge), 251-292
[38] Hirschberg, P.; Knobloch, E., Sil’nikov-Hopf bifurcation, Physica D, 62, 202-216 (1993) · Zbl 0786.34052
[39] Bosch, M.; Simó, C., Attractors in a Sil’nikov-Hopf scenario and a related one-dimensional map, Physica D, 62, 217-229 (1993) · Zbl 0783.58043
[40] Anishchenko, V. S.; Silchenko, A. N.; Khovanov, I. A., Synchronization of switching processes in coupled Lorenz systems, Phy. Rev. E, 57, 316-322 (1998)
[41] Eckhardt, B.; Mersmann, A., Transition to turbulence in a shear flow, Phys. Rev. E, 60, 509-517 (1999)
[42] A. Schmiegel, Transition to turbulence in linearly stable shear flows, Ph.D. thesis, Philipps-Universität Marburg, Germany, 1999. Available at http://archiv.ub.uni-marburg.de/diss/z2000/0062/pdf/z2000-0062.pdf; A. Schmiegel, Transition to turbulence in linearly stable shear flows, Ph.D. thesis, Philipps-Universität Marburg, Germany, 1999. Available at http://archiv.ub.uni-marburg.de/diss/z2000/0062/pdf/z2000-0062.pdf
[43] Keller, C. F., Climate, modeling, and predictability, Physica D, 133, 296-308 (1999) · Zbl 1194.86009
[44] Ravelo, A. C.; Andreasen, D. H.; Lyle, M.; Lyle, A. O.; Wara, M. W., Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature, 429, 263-267 (2004)
[45] (Berryman, A., Population Cycles. The Case for Trophic Interactions (2002), Oxford University Press: Oxford University Press Oxford)
[46] Winfree, A. T., The Geometry of Biological Time (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0856.92002
[47] Goldbeter, A., Biochemical Oscillations and Cellular Rhythms (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0837.92009
[48] Barnett, S.; Cameron, R. G., Introduction to Mathematical Control Theory (1985), Clarendon: Clarendon Oxford · Zbl 0576.93001
[49] Rosell, J. I.; Farjas, J.; Herrero, R.; Pi, F.; Orriols, G., Homoclinic phenomena in opto-thermal bistability with localized absorption, Physica D, 85, 509-547 (1995) · Zbl 0890.58056
[50] Herrero, R.; Pons, R.; Farjas, J.; Pi, F.; Orriols, G., Homoclinic dynamics in experimental Shil’nikov attractors, Phys. Rev. E, 53, 5627-5636 (1996)
[51] Fujimoto, K.; Kaneko, K., How fast elements can affect slow dynamics, Physica D, 180, 1-16 (2003), See, for instance · Zbl 1024.37051
[52] Gray, W. M., Hurricanes: their formation, structure and likely role in the tropical circulation, (Shaw, D. B., Meteorology Over Tropical Oceans (1979), Roy. Meteor. Soc: Roy. Meteor. Soc Berkshire), 155-218
[53] Premnath, K. N.; Abraham, J., Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model, Phys. Fluids, 17, 122105 (2005) · Zbl 1188.76124
[54] Mahner, M.; Bunge, M., Foundations of Biophilosophy (1997), Springer: Springer Berlin
[55] Sklar, L., Physics and Chance (1993), Cambridge University Press: Cambridge University Press Cambridge
[56] Amsterdamski, S., La querelle du Déterminisme (1990), Éditions Gallimard: Éditions Gallimard Paris
[57] Earman, J., Aspects of determinism in modern physics, (Butterfield, J.; Earman, J., Handbook of the Philosophy of Science. Philosophy of Physics (2007), Elsevier: Elsevier Amsterdam), 1369-1453
[58] Nicolis, G.; Prigogine, I., Exploring Complexity (1989), Freeman: Freeman New York · Zbl 0584.58034
[59] Cushing, J. T., Quantum Mechanics: Historical Contingency and The Copenhagen Hegemony (1994), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0828.00005
[60] Glendinning, P., Global bifurcations in flows, (Bedford, T.; Swift, J., New Directions in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press Cambridge), 120-149
[61] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[62] Rabinovich, M.; Volkovskii, A.; Lecanda, P.; Huerta, R.; Abarbanel, H. D.I.; Laurent, G., Dynamical encoding by networks of competing neuron groups: winnerless competition, Phys. Rev. Lett., 87, 068102 (2001)
[63] Dellnitz, M.; Field, M.; Golubitsky, M. M.; Hohmann, A.; Ma, J., Cycling chaos, IEEE Trans. Circuits Syst., 42, 821-823 (1995)
[64] Guckenheimer, J.; Holmes, P., Structurally stable heteroclinic cycles, Math. Proc. Cambridge Philos. Soc., 103, 189-192 (1988) · Zbl 0645.58022
[65] (Mullin, T.; Kerswell, R., IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions (2005), Springer: Springer Dordrecht) · Zbl 1099.76008
[66] Kawahara, G.; Kida, S., Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, J. Fluid Mech., 449, 291-300 (2001) · Zbl 0996.76034
[67] Moehlis, J.; Smith, T. R.; Holmes, P.; Faisst, H., Models for turbulent plane Couette flow using the proper orthogonal decomposition, Phys. Fluids, 14, 2493-2507 (2002) · Zbl 1185.76261
[68] Frisch, U., Turbulence (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0727.76064
[69] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25, 2193-2203 (1982) · Zbl 0536.76034
[70] Cuypers, Y.; Maurel, A.; Petitjeans, P., Vortex burst as a source of turbulence, Phys. Rev. Lett., 91, 194502 (2003)
[71] Burkhalter, J. E.; Koschmieder, E. L., Steady supercritical Taylor vortex flow after sudden starts, Phys. Fluids, 17, 1929-1935 (1974)
[72] Benjamin, T. B.; Mullin, T., Notes on the multiplicity of flows in the Taylor experiment, J. Fluid Mech., 121, 219-230 (1982)
[73] Koschmieder, E. L., Bénard Cells and Taylor Vortices (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0780.76003
[74] Meyer-Spasche, R.; Keller, H. B., Computation of the axisymmetric flow between rotating cylinders, J. Chem. Phys., 35, 100-109 (1980) · Zbl 0425.76023
[75] Nagata, M., Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech.. J. Fluid Mech., Phys. Rev. E, 55, 2023-2025 (1997)
[76] Clever, R. M.; Busse, F. H., Three-dimensional convection in a horizontal fluid layer subjected to a constant shear, J. Fluid Mech., 234, 511-527 (1992) · Zbl 0744.76052
[77] Cherhabili, A.; Ehrenstein, U., Spatially localized two-dimensional equilibrium states in plane Couette flow, Eur. J. Mech. B Fluids, 14, 677-696 (1995) · Zbl 0862.76018
[78] Gibson, J. F.; Halcrow, J.; Cvitanovic, P., Visualizing the geometry of state space in plane Couette flow, J. Fluid Mech.. J. Fluid Mech., J. Fluid Mech., 638, 243-266 (2009) · Zbl 1183.76688
[79] Halcrow, J.; Gibson, J. F.; Cvitanovic, P.; Viswanath, D., Heteroclinic connections in plane Couette flow, J. Fluid Mech., 621, 365-376 (2009) · Zbl 1171.76383
[80] Clever, R. M.; Busse, F. H., Tertiary and quaternary solutions for plane Couette flow, J. Fluid Mech., 344, 137-153 (1997) · Zbl 0898.76028
[81] J. Halcrow, Charting the state space of plane Couette flow: equilibria, relative equilibria and heteroclinic connections, Ph.D. Thesis, Georgia Institute of Technology, USA, 2008. Available at http://chaosbook.org/projects/Halcrow/thesis.pdf; J. Halcrow, Charting the state space of plane Couette flow: equilibria, relative equilibria and heteroclinic connections, Ph.D. Thesis, Georgia Institute of Technology, USA, 2008. Available at http://chaosbook.org/projects/Halcrow/thesis.pdf
[82] Cvitanovic, P.; Gibson, J. F., Geometry of turbulence in wall-bounded shear flows: periodic orbits, Phys. Scr., 142, 014007-014020 (2010)
[83] Fraenkel, L. E., Laminar flow in symmetrical channels with slightly curved walls, Proc. R. Soc. Lond. A, 267, 119-138 (1962) · Zbl 0104.42403
[84] Alleborn, N.; Nandakumar, K.; Raszillier, H.; Durst, F., Further contributions on the two-dimensional flow in a sudden expansion, J. Fluid Mech., 330, 169-188 (1997) · Zbl 0894.76023
[85] Puigjaner, D.; Herrero, J.; Giralt, F.; Simó, C., Stability analysis of the flow in a cubical cavity heated from below, Phys. Fluids. Phys. Fluids, Phys. Rev. E, 73, 046304 (2006)
[86] Madja, A. J.; Bertozzi, A. L., Vorticity and Incompressible Flow (2002), Cambridge University Press: Cambridge University Press Cambridge
[87] Engel, A. K.; Fries, P.; Singer, W., Dynamic predictions: oscillations and synchrony in top-down processing, Nature Rev. Neuroscience, 2, 704-716 (2001)
[88] Varela, F.; Lachaux, J-P.; Rodríguez, E.; Martinerie, J., The brainweb: phase synchronization and large-scale integration, Nature Rev. Neuroscience, 2, 229-239 (2001)
[89] Başar, E., Memory and Brain Dynamics (2004), CRC Press: CRC Press Boca Raton
[90] Buzsáki, G.; Draguhn, A., Neuronal oscillations in cortical networks, Science, 304, 1926-1929 (2004)
[91] Llinás, R.; Ribairy, U.; Contreras, D.; Pedroarena, C., The neuronal basis for consciousness, Philos. Trans. R. Soc. Lond. B, 353, 1841-1849 (1998)
[92] Arieli, A.; Sterkin, A.; Grinvald, A.; Aersten, A., Dynamics of ongoing activity: explanation of the large variability, Science, 273, 1868-1871 (1996)
[93] Fiser, J.; Chiu, C.; Weliky, M., Small modulation of ongoing cortical dynamics by sensory input during natural vision, Nature, 431, 573-578 (2004)
[94] Gray, C. M.; Singer, W., Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA, 86, 1698-1702 (1989)
[95] Llinás, R.; Ribairy, U., Coherent 40 Hz oscillation characterizes dream state in humans, Proc. Natl. Acad. Sci. USA, 90, 2078-2081 (1993)
[96] Tsodyks, M.; Kenet, T.; Grinvald, A.; Arieli, A., Linking spontaneous activity of single cortical neurons and the underlying functional architecture, Science, 286, 1943-1946 (1999)
[97] Freeman, W. J., Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons, Internat. J. Bifur. Chaos, 10, 2307-2322 (2000)
[98] Tallon-Baudry, C., Oscillatory synchrony and human visual cognition, J. Physiol. Paris, 97, 355-363 (2003)
[99] (Koch, C.; Davis, J. L., Large-Scale Neuronal Theories of the Brain (1994), MIT Press: MIT Press Cambridge)
[100] Edelman, G. M.; Tononi, G., A Universe of Consciousness: How Matter Becomes Imagination (2000), Basic Books: Basic Books New York
[101] Llinás, R. R., I of the Vortex: From Neurons to Self (2001), The MIT Press: The MIT Press Cambridge
[102] Buzsáki, G., Rhythms of the Brain (2006), Oxford University Press: Oxford University Press New York · Zbl 1204.92017
[103] Tsuda, I., Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems, Behav. Brain Sci., 24, 793-847 (2001)
[104] Maass, W.; Natschlger, T.; Markram, H., Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput., 14, 2531-2560 (2002) · Zbl 1057.68618
[105] Rabinovich, M. I.; Huerta, R.; Laurent, G., Transient dynamics for neural processing, Science, 321, 48-50 (2008)
[106] Destexhe, A.; Marder, E., Plasticity in single neuron and circuit computations, Nature, 431, 789-795 (2004)
[107] Hebb, D. O., The Organization of Behavior (1949), Wiley: Wiley New York
[108] Bliss, T. V.P.; Collingridge, G. I., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361, 31-39 (1993)
[109] Bienenstock, E. L.; Cooper, L. N.; Munro, P. W., Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex, J. Neurosci., 2, 32-48 (1982)
[110] Turrigiano, G. G.; Nelson, S. B., Homeostatic plasticity in the developing nervous system, Nature Rev. Neuroscience, 5, 97-107 (2004)
[111] Peigneux, P.; Laureys, S.; Delbeuck, P.; Maquet, P., Sleeping brain, learning brain. The role of sleep for memory systems, Neuroreport, 12, A111-A124 (2001)
[112] Buzsáki, G., A two-stage model of memory trace formation: a role for noisy brain states, Neuroscience, 31, 551-570 (1989)
[113] Stickgold, R., Sleep: off-line memory reprocessing, Trends Cogn. Sci., 2, 484-492 (1998)
[114] Fuster, J. M., Memory in the Cerebral Cortex (1995), MIT Press: MIT Press Cambridge, pp. 211-216
[115] Rosffwarg, H. P.; Muzio, J. N.; Dement, W. C., Ontogenetic development of the human sleep-dream cycle, Science, 152, 604-619 (1966)
[116] Roskies, A. L., The binding problem, Neuron, 24, 7-9 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.