# zbMATH — the first resource for mathematics

Landau’s problems on primes. (English) Zbl 1239.11101
This is a survey of results that have been obtained on Landau’s problems on primes, which are the four problems Landau listed at the 5th International Congress of Mathematicians in Cambridge in 1912. These problems are:
1) Are there infinitely many primes of the form $$n^2+1$$?
2) Is every even number greater than 2 equal to the sum of two primes?
3) Are there infinitely many twin primes?
4) Is there alway at least one prime between two consecutive squares?
None of these problems have been solved, but an enormous amount of work has been done on each, and this work has had a major influence on the whole field of analytic number theory. The survey provides a detailed history of what has been done on these problems, and includes 204 references. It should be pointed out that the paper also gives a nice introduction to the underlying ideas used in recent work on small gaps between primes which will be helpful for readers interested in this topic. Among the topics which the paper includes are upper bounds on large gaps between consecutive primes, the Cramér model for large gaps between primes, lower bounds for large gaps, small gaps including recent work of Goldston, Pintz, and Yıldırım, sieve results on almost primes and Chen’s theorem, results of Goldston, Graham, Pintz, and Yıldırım on almost primes and the Erdős problems concerning equal values of arithmetic functions on consecutive integers, the exceptional set in the Goldbach problem, the ternary Goldbach problem, gaps between Goldbach numbers, the Goldbach-Linnik problem, recent work of Pintz on the exceptional set, and almost primes values of $$n^2+1$$ such as Iwaniec’s theorem.

##### MSC:
 11N05 Distribution of primes 11P32 Goldbach-type theorems; other additive questions involving primes 11-02 Research exposition (monographs, survey articles) pertaining to number theory 11N36 Applications of sieve methods
##### Keywords:
primes; twin primes; Goldbach
Full Text:
##### References:
 [1] R. J. Backlund, Über die Differenzen zwischen den Zahlen, die zu den ersten $$n$$ Primzahlen teilerfremd sind. Commentationes in honorem E. L. Lindelöf. Annales Acad. Sci. Fenn. 32 (1929), Nr. 2, 1-9. · JFM 55.0687.01 [2] R. C. Baker, G. Harman, The difference between consecutive primes. Proc. London Math. Soc. (3) 72 (1996), 261-280. · Zbl 0853.11076 [3] R. C. Baker, G. Harman, J. Pintz, The exceptional set for Goldbach’s problem in short intervals, in: Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995). 1-54, London Math. Soc. Lecture Note Ser. 237, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0929.11042 [4] R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II. Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. · Zbl 1016.11037 [5] A. Balog, On the fractional part of $$p^ϑ$$. Archiv Math. 40 (1983), 434-440. · Zbl 0517.10038 [6] M. B. Barban, The density of zeros of Dirichlet $$L$$-series and the problem of the sum of primes and near primes. Mat. Sb. 61 (1963), 418-425 (Russian). · Zbl 0127.26903 [7] P. T. Bateman, R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16 (1962), 363-367. · Zbl 0105.03302 [8] J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu’elle enferme. J. École Roy. Polytechnique 18 (1845), 123-140. [9] E. Bombieri, On the large sieve. Mathematika 12 (1965), 201-225. · Zbl 0136.33004 [10] E. Bombieri, H. Davenport, Small differences between prime numbers. Proc. Roy. Soc. Ser. A 293 (1966), 1-18. · Zbl 0151.04201 [11] A. Brauer, H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre. Sber. Berliner Math. Ges. 29 (1930), 116-125. [12] H. Brocard, L’intermédiaire des math. 4 (1897), p. 159. [13] V. Brun, Le crible d’Eratosthéne et le théorème de Goldbach. Videnselsk. Skr. 1 (1920), Nr. 3. [14] A. A. Buhštab, New improvements in the sieve of Eratosthenes. Mat. Sb. 4 (1938), 357-387 (Russian). [15] A. A. Buhštab, Sur la décomposition des nombres pairs en somme de deux composantes dont chacune est formée d’un nombre borné de facteurs premiers. Doklady Akad. Nauk. SSSR 29 (1940), 544-548. · JFM 66.0158.02 [16] A. A. Buhštab, New results in the investigation of Goldbach-Euler’s problem and the problem of twin prime numbers. Doklady Akad. Nauk. SSSR 162 (1965), 735-738 (Russian). · Zbl 0127.02101 [17] A. A. Buhštab, A combinatorial strengthening of the Eratosthenian sieve method. Usp. Mat. Nauk 22 (1967), no. 3, 199-226 (Russian). · Zbl 0199.09001 [18] Y. Buttkewitz, Master’s Thesis. Freiburg Univ., 2003. [19] F. Carlson,Über die Nullstellen der Dirichletschen Reihen und der Riemannscher $$ζ$$-Funktion. Arkiv f. Math. Astr. Fys. 15 (1920), No. 20. [20] P. L. Čebyšev, Mémoire sur les nombres premiers. Mémoire des seuvants étrangers de l’Acad. Sci. St. Pétersbourg 7 (1850), 17-33. [21] Jing Run Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385-386 (Chinese). [22] Jing Run Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157-176. · Zbl 0319.10056 [23] Jing Run Chen, On the distribution of almost primes in an interval. Sci. Sinica 18 (1975), 611-627. · Zbl 0381.10033 [24] Jing Run Chen, Jian Min Liu, The exceptional set of Goldbach numbers, III. Chinese Quart. J. Math. 4 (1989), 1-15. [25] J. G. van der Corput, Sur l’hypothése de Goldbach pour presque tous les nombres pairs. Acta Arith. 2 (1937), 266-290. · Zbl 0018.05203 [26] H. Cramér, Some theorems concerning prime numbers. Arkiv f. Math. Astr. Fys. 15 (1920), No. 5, 1-33. [27] H. Cramér, Prime numbers and probability. Skand. Math. Kongr. 8 (1935), 107-115. · Zbl 0011.40801 [28] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23-46. · Zbl 0015.19702 [29] N. G. Čudakov, On the zeros of Dirichlet’s $$L$$-functions. Mat. Sb. 1 (1936a), 591-602. · Zbl 0063.07326 [30] N. G. Čudakov, On the difference between two neighbouring prime numbers. Mat. Sb. 1 (1936b), 799-814. · Zbl 0016.15502 [31] N. G. Čudakov, On the density of the set of even numbers which are not representable as a sum of two primes. Izv. Akad. Nauk. SSSR 2 (1938), 25-40. · Zbl 0019.00603 [32] H. Davenport, Multiplicative Number Theory. Revised by Hugh L. Montgomery, 2nd edition, Springer, Berlin, Heidelberg, New York, 1980. · Zbl 0453.10002 [33] A. Desboves, Sur un théorème de Legendre et son application à la recherche de limites qui comprennent entre elles des nombres premiers. Nouv. Ann. Math. 14 (1855), 281-295. [34] Descartes, Opuscula Posthuma, Excerpta Mathematica. Vol. 10, 1908. [35] J.-M. Deshouillers, Amélioration de la constante de Šnirelman dans le probléme de Goldbach. Sém. Delange, Pisot, Poitou 14 (1972/73), exp. 17. · Zbl 0322.10021 [36] J.-M. Deshouillers, Sur la constante de Šnirelman. Sém. Delange, Pisot, Poitu 17 (1975/76), exp. 16. · Zbl 0357.10025 [37] J.-M. Deshouillers, H. Iwaniec, On the greatest prime factor of $$n^2 + 1$$. Ann. Inst. Fourier 32 (1982), 1-11. · Zbl 0489.10038 [38] J.-M. Deshouillers, G. Effinger, H. te Riele, D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99-104. · Zbl 0892.11032 [39] L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. (2), 33 (1904), 155-161. [40] P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandl. Kgl. Preuß. Akad. Wiss. (1837), 45-81. [Werke, I, 313-342. G. Reimer, Berlin, 1889; French translation: J. math. pures appl. 4, 1839, 393-422.] [41] P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory. Symposia Mathematica 4 INDAM, Rome, 59-72, Academic Press, London, 1968/69. · Zbl 0238.10030 [42] P. Erdős, On the difference of consecutive primes. Quart. J. Math. Oxford ser. 6 (1935), 124-128. · Zbl 0012.01102 [43] P. Erdős, The difference of consecutive primes. Duke Math. J. 6 (1940), 438-441. [44] P. Erdős, Some problems on number theory, in: Analytic and elementary number theory (Marseille, 1983). Publ. Math. Orsay, 86-1 (1983), 53-57. [45] P. Erdős, L. Mirsky, The distribution of values of the divisor function $$d(n)$$. Proc. London Math. Soc. (3) 2 (1952), 257-271. · Zbl 0047.04602 [46] T. Estermann, Eine neue Darstellung und neue Anwendungen der Viggo Brunschen Methode. J. Reine Angew. Math. 168 (1932), 106-116. · Zbl 0005.15303 [47] T. Estermann, On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. (2) 44 (1938), 307-314. · JFM 64.0126.05 [48] É. Fouvry, F. Grupp, On the switching principle in sieve theory. J. Reine Angew. Math. 370 (1986), 101-126. · Zbl 0588.10051 [49] P.-H. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIéme siécle. St. Pétersbourg, 1843. [Reprint: Johnson Reprint Co. 1968.] · Zbl 0155.00702 [50] P. X. Gallagher, A large sieve density estimate near $$σ =1$$. Invent. Math. 11 (1970), 329-339. · Zbl 0219.10048 [51] P. X. Gallagher, Primes and powers of 2. Invent. Math. 29 (1975), 125-142. · Zbl 0305.10044 [52] D. A. Goldston, On Hardy and Littlewood’s contribution to the Goldbach conjecture, in: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). 115-155, Univ. Salerno, Salerno, 1992. · Zbl 0792.11039 [53] D. A. Goldston, Y. Motohashi, J. Pintz, C. Y. Yıldırım, Small gaps between primes exist. Proc. Japan Acad. 82A (2006), 61-65. · Zbl 1168.11041 [54] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples. Annals of Math. (200?), to appear, AIM Preprint Series, No. 2005-19, http://aimath.org/preprints.html [55] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples II. Acta Math. (200??), to appear, preprint at arXiv:0710.2728 [56] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples III: On the difference $$p_{n + ν } - p_n$$. Funct. Approx. Comment. Math. 35 (2006), 79-89. · Zbl 1196.11123 [57] D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between products of two primes. Proc. London Math. Soc. (200?), to appear, preprint at arXiv:math/0609615 · Zbl 1213.11171 [58] D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdős. (200??), Preprint at arXiv: 0803.2636 · Zbl 1241.11114 [59] A. Granville, Unexpected irregularities in the distribution of prime numbers, in: Proceedings of the International Congress of Mathematicians (Zürich, 1994). Vol. 1, 2, 388-399, Birkhäuser, Basel, 1995. · Zbl 0843.11043 [60] A. Granville, Harald Cramér and the Distribution of Prime Numbers. Scand. Actuarial J. No. 1 (1995), 12-28. · Zbl 0833.01018 [61] G. Greaves, Sieves in Number Theory. Springer, 2001. · Zbl 1003.11044 [62] J. Hadamard, Sur les zéros de la fonction $$ζ (s)$$ de Riemann. Comptes Rendus Acad. Sci. Paris 122 (1896), 1470-1473. · JFM 27.0154.02 [63] J. Hadamard, Sur la fonction $$ζ (s)$$. Comptes Rendus Acad. Sci. Paris 123 (1896), p. 93. · JFM 27.0155.01 [64] J. Hadamard, Sur la distribution des zéros de la fonction $$ζ (s)$$ et ses conséquances arithmétiques. Bull. Soc. Math. France 24 (1896), 199-220. · JFM 27.0154.01 [65] G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1-70. · JFM 48.0143.04 [66] G. H. Hardy, J. E. Littlewood, Some problems of ’Partitio Numerorum’, V: A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc. (2) 22 (1924), 46-56. · JFM 49.0127.03 [67] G. Harman, Primes in short intervals. Math. Zeitschr. 180 (1982), 335-348. · Zbl 0482.10040 [68] G. Harman, On the distribution of $$\sqrt{p}$$ modulo one. Mathematika 30 (1983), 104-116. · Zbl 0504.10019 [69] D. R. Heath-Brown, A parity problem from sieve theory. Mathematika 29 (1982), 1-6. · Zbl 0475.10035 [70] D. R. Heath-Brown, Prime twins and Siegel zeros. Proc. London Math. Soc. (3) 47 (1983), 193-224. · Zbl 0517.10044 [71] D. R. Heath-Brown, The divisor function at consecutive integers. Mathematika 31 (1984), 141-149. · Zbl 0529.10040 [72] D. R. Heath-Brown, Almost-prime $$k$$-tuples. Mathematika 44 (1997), 245-266. · Zbl 0886.11052 [73] D. R. Heath-Brown, H. Iwaniec, On the difference between consecutive prime numbers. Invent. Math. 55 (1979), 49-69. · Zbl 0424.10028 [74] D. R. Heath-Brown, J.-C. Puchta, Integers represented as a sum of primes and powers of two. Asian J. Math. 6 (2002), no. 3, 535-565. · Zbl 1097.11050 [75] H. Heilbronn, E. Landau, P. Scherk, Alle großen ganzen Zahlen lassen sich als Summe von höchstens 71 Primzahlen darstellen. Časopis pěst. Math. Fys. 65 (1936), 117-141. [E. Landau, Collected Works, 9, 351-375, Thales Verlag; The Collected Papers of Hans Arnold Heilbronn, 197-211, J. Wiley 1988.] · Zbl 0013.19902 [76] A. J. Hildebrand, Erdős’ problems on consecutive integers, Paul Erdős and his Mathematics I. Bolyai Society Mathematical Studies 11, Budapest, 2002, 305-317. · Zbl 1046.11071 [77] D. Hilbert, Gesammelte Abhandlungen. Vol. 3, 290-329, Springer, Berlin, 1935. · Zbl 0013.05604 [78] G. Hoheisel, Primzahlprobleme in der Analysis. SBer. Preuss. Akad. Wiss., Berlin, 1930, 580-588. · JFM 56.0172.02 [79] C. Hooley, On the greatest prime factor of a quadratic polynomial. Acta Math. 117 (1967), 281-299. · Zbl 0146.05704 [80] M. N. Huxley, On the differences of primes in arithmetical progressions. Acta Arith. 15 (1968/69), 367-392. · Zbl 0186.36402 [81] M. N. Huxley, On the difference between consecutive primes. Invent math. 15 (1972), 164-170. · Zbl 0241.10026 [82] M. N. Huxley, Small differences between consecutive primes. Mathematika 20 (1973), 229-232. · Zbl 0287.10029 [83] M. N. Huxley, Small differences between consecutive primes II. Mathematika 24 (1977), 142-152. · Zbl 0367.10038 [84] M. N. Huxley, An application of the Fouvry-Iwaniec theorem. Acta Arith. 43 (1984), 441-443. · Zbl 0542.10036 [85] A. E. Ingham, On the difference between consecutive primes. Quart. J. Math. Oxford ser. 8 (1937), 255-266. · JFM 63.0903.04 [86] H. Iwaniec, Almost primes represented by quadratic polynomials. Invent. math. 47 (1978), 171-188. · Zbl 0389.10031 [87] H. Iwaniec, M. Jutila, Primes in short intervals. Arkiv Mat. 17 (1979), 167-176. · Zbl 0408.10029 [88] H. Iwaniec, J. Pintz, Primes in short intervals. Monatsh. Math. 98 (1984), 115-143. · Zbl 0544.10040 [89] Chaohua Jia, Difference between consecutive primes. Sci. China Ser. A 38 (1995a), 1163-1186. · Zbl 0844.11057 [90] Chaohua Jia, Goldbach numbers in a short interval, I. Science in China 38 (1995b), 385-406. · Zbl 0831.11052 [91] Chaohua Jia, Goldbach numbers in a short interval, II. Science in China 38 (1995c), 513-523. · Zbl 0831.11053 [92] Chaohua Jia, Almost all short intervals containing prime numbers. Acta Arith. 76 (1996a), 21-84. · Zbl 0841.11043 [93] Chaohua Jia, On the exceptional set of Goldbach numbers in a short interval. Acta Arith. 77 (1996b), no. 3, 207-287. · Zbl 0863.11066 [94] Chaohua Jia, Ming-Chit Liu, On the largest prime factor of integers. Acta Arith. 95 (2000), No. 1, 17-48. · Zbl 1161.11384 [95] M. Jutila, On numbers with a large prime factor, I. J. Indian Math. Soc. (N.S.) 37 (1973), 43-53. · Zbl 0293.10023 [96] M. Jutila, On Linnik’s constant. Math. Scand. 41 (1977), 45-62. · Zbl 0363.10026 [97] L. Kaniecki, On Šnirelman’s constant under the Riemann hypothesis. Acta Arith. 72 (1995), 361-374. · Zbl 0846.11058 [98] J. Kaczorowski, A. Perelli, J. Pintz, A note on the exceptional set for Goldbach’s problem in short intervals. Monatsh. Math. 116, no. 3-4 (1995), 275-282. Corrigendum: ibid. 119 (1995), 215-216. · Zbl 0836.11034 [99] I. Kátai, A remark on a paper of Ju. V. Linnik. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99-100. · Zbl 0145.04905 [100] R. M. Kaufman, The distribution of $$\lbrace \sqrt{p}\rbrace$$. Mat. Zametki 26 (1979), 497-504 (Russian). · Zbl 0417.10030 [101] N. I. Klimov, On the computation of Šnirelman’s constant. Volžskij Mat. Sbornik 7 (1969), 32-40 (Russian). [102] N. I. Klimov, A refinement of the estimate of the absolute constant in the Goldbach-Šnirelman problem, in: Number theory: Collection of Studies in Additive Number Theory. Naučn. Trudy Kuibyšev. Gos. Ped. Inst. 158 (1975), 14-30 (Russian). [103] N. I. Klimov, A new estimate of the absolute constant in the Goldbach-Šnirelman problem. Izv. VUZ no. 1 (1978), 25-35 (Russian). · Zbl 0392.10047 [104] N. I. Klimov, G. Z. Pilt’ai, T. A. Šeptickaja, An estimate for the absolute constant in the Goldbach-Šnirelman problem. Issled. po teorii čisel, Saratov No. 4 (1972), 35-51 (Russian). · Zbl 0251.10038 [105] S. Knapowski, On the mean values of certain functions in prime number theory. Acta Math. Acad. Sci. Hungar. 10 (1959), 375-390. · Zbl 0093.25804 [106] H. von Koch, Sur la distribution des nombres premiers. Acta Math. 24 (1901), 159-182. · JFM 31.0201.02 [107] L. Kronecker, Vorlesungen über Zahlentheorie, I. p. 68, Teubner, Leipzig, 1901. · Zbl 0394.10002 [108] P. Kuhn, Zur Vigo Brun’schen Siebmethode I. Norske Vid. Selsk. 14 (1941), 145-148. · JFM 67.0128.02 [109] P. Kuhn, Neue Abschätzungen auf Grund der Viggo Brunschen Siebmethode. 12. Skand. Mat. Kongr. (1953), 160-168. · Zbl 0058.27505 [110] P. Kuhn, Über die Primteiler eines Polynoms. Proc. ICM Amsterdam 2 (1954), 35-37. [111] E. Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresber. Deutsche Math. Ver. 21 (1912), 208-228. [Proc. 5th Internat. Congress of Math., I, 93-108, Cambridge 1913; Collected Works, 5, 240-255, Thales Verlag.] [112] A. Languasco, On the exceptional set of Goldbach’s problem in short intervals. Mh. Math. 141 (2004), 147-169. · Zbl 1059.11059 [113] A. Languasco, J. Pintz, A. Zaccagnini, On the sum of two primes and $$k$$ powers of two. Bull. London Math. Soc. 39 (2007), no. 5, 771-780. · Zbl 1137.11066 [114] Hong Ze Li, Goldbach numbers in short intervals. Science in China 38 (1995), 641-652. · Zbl 0831.11054 [115] Hong Ze Li, Primes in short intervals. Math. Proc. Cambridge Philos. Soc. 122 (1997), 193-205. · Zbl 1156.11335 [116] Hong Ze Li, The exceptional set of Goldbach numbers. Quart. J. Math. Oxford Ser. (2) 50, no. 200 (1999), 471-482. · Zbl 0937.11046 [117] Hong Ze Li, The exceptional set of Goldbach numbers, II. Acta Arith. 92, no. 1 (2000a), 71-88. · Zbl 0963.11057 [118] Hong Ze Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes. Acta Arith. 92 (2000b), 229-237. · Zbl 0952.11022 [119] Hong Ze Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes, II. Acta Arith. 96 (2001), 369-379. · Zbl 0973.11088 [120] Yu. V. Linnik, Prime numbers and powers of two. Trudy Mat. Inst. Steklov. 38 (1951), 152-169 (Russian). · Zbl 0049.31402 [121] Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem. Izv. Akad. Nauk. SSSR 16 (1952), 503-520. · Zbl 0049.03104 [122] Yu. V. Linnik, Addition of prime numbers and powers of one and the same number. Mat. Sb. (N.S.) 32 (1953), 3-60 (Russian). · Zbl 0051.03402 [123] J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of $$2$$ in a representation of large even integers, I. Sci. China Ser. A 41 (1998a), 386-397. · Zbl 1029.11049 [124] J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of 2 in a representation of large even integers, II. Sci. China Ser. A 41 (1998b), 1255-1271. · Zbl 0924.11086 [125] J. Y. Liu, M. C. Liu, T. Z. Wang, On the almost Goldbach problem of Linnik. J. Théor. Nombres Bordeaux 11 (1999), 133-147. · Zbl 0979.11051 [126] Hong-Quan Liu, Jie Wu, Numbers with a large prime factor. Acta Arith. 89, no. 2 (1999), 163-187. · Zbl 0937.11038 [127] S. T. Lou, Q. Yao, A Chebychev’s type of prime number theorem in a short interval, II. Hardy-Ramanujan J. 15 (1992), 1-33. · Zbl 0780.11039 [128] S. T. Lou, Q. Yao, The number of primes in a short interval. Hardy-Ramanujan J. 16 (1993), 21-43. · Zbl 0777.11032 [129] H. Maier, Small differences between prime numbers. Michigan Math. J. 35 (1988), 323-344. · Zbl 0671.10037 [130] H. Maier, C. Pomerance, Unusually large gaps between consecutive primes. Trans. Amer. Math. Soc. 322 (1990), 201-237. · Zbl 0706.11052 [131] E. Maillet, L’intermédiaire des math. 12 (1905), p. 108. [132] H. Mikawa, On the exceptional set in Goldbach’s problem. Tsukuba J. Math. 16 (1992), 513-543. · Zbl 0778.11054 [133] H. Mikawa, On the intervals between consecutive numbers that are sums of two primes. Tsukuba J. Math. 17, No. 2 (1993), 443-453. · Zbl 0798.11040 [134] H. L. Montgomery, Zeros of $$L$$-functions. Invent. math. 8 (1969), 346-354. · Zbl 0204.37401 [135] H. L. Montgomery, R. C. Vaughan, The exceptional set in Goldbach’s problem. Acta Arith. 27 (1975), 353-370. · Zbl 0301.10043 [136] C. J. Mozzochi, On the difference between consecutive primes. J. Number Th. 24 (1986), 181-187. · Zbl 0599.10033 [137] W. Narkiewicz, The Development of Prime Number Theory. From Euclid to Hardy and Littlewood. Springer, 2000. · Zbl 0942.11002 [138] Cheng Dong PanOn the representation of even numbers as the sum of a prime and a near prime. Sci. Sinica 11 (1962), 873-888 (Russian). [139] Cheng Dong PanOn the representation of even numbers as the sum of a prime and a product of not more than 4 primes. Sci. Sinica 12 (1963), 455-473. [140] A. Perelli, J. Pintz, On the exceptional set for the $$2k$$-twin primes problem. Compositio Math. 82, no. 3 (1992), 355-372. · Zbl 0756.11028 [141] A. Perelli, J. Pintz, On the exceptional set for Goldbach’s problem in short intervals. J. London Math. Soc. (2) 47 (1993), 41-49. · Zbl 0806.11042 [142] G. Z. Pilt’ai, On the size of the difference between consecutive primes. Issledovania po teorii chisel, 4 (1972), 73-79. [143] Ch. G. Pinner, Repeated values of the divisor function. Quart. J. Math. Oxford Ser. (2) 48, no. 192 (1997), 499-502. · Zbl 0890.11028 [144] J. Pintz, On the remainder term of the prime number formula I. On a problem of Littlewood. Acta Arith. 36 (1980a), 341-365. · Zbl 0439.10028 [145] J. Pintz, On the remainder term of the prime number formula V. Effective mean value theorems. Studia Sci. Math. Hungar. 15 (1980b), 215-223. · Zbl 0469.10017 [146] J. Pintz, On the remainder term of the prime number formula VI. Ineffective mean value theorems. Studia Sci. Math. Hungar. 15 (1980c), 225-230. · Zbl 0469.10018 [147] J. Pintz, On primes in short intervals, I. Studia Sci. Math. Hungar. 16 (1981), 395-414. · Zbl 0469.10013 [148] J. Pintz, On primes in short intervals, II. Studia Sci. Math. Hungar. 19 (1984), 89-96. · Zbl 0573.10029 [149] J. Pintz, Very large gaps between consecutive primes. J. Number Th. 63 (1997), 286-301. · Zbl 0870.11056 [150] J. Pintz, Recent Results on the Goldbach Conjecture, in: Elementare und Analytische Zahlentheorie (Tagungsband). Proceedings ELAZ-Conference, May 24-28, 2004, Steiner Verlag, Stuttgart, 2006, pp. 220-254. [151] J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes. Funct. Approx. Comment. Math. 37 (2007), part 2, 361-376. · Zbl 1226.11096 [152] J. Pintz, I. Z. Ruzsa, On Linnik’s approximation to Goldbach’s problem, I. Acta Arith. 109 (2003), no. 2, 169-194. · Zbl 1031.11060 [153] J. Pintz, I. Z. Ruzsa, On Linnik’s approximation to Goldbach’s problem, II. Manuscript (200?). · Zbl 1031.11060 [154] A. de Polignac, Six propositions arithmologiques sur les nombres premiers. Nouv. Ann. Math. 8 (1849), 423-429. [155] G. Pólya, Heuristic reasoning in the theory of numbers. Amer. Math. Monthly 66 (1959), 375-384. · Zbl 0092.04901 [156] H. Rademacher, Beiträge zur Viggo Brunschen Methode in der Zahlentheorie. Abh. Math. Sem. Hamburg 3, 12-30. [Collected Papers 1 (1924), 259-277, MIT Press, 1974.] · JFM 49.0128.05 [157] K. Ramachandra, A note on numbers with a large prime factor. J. London Math. Soc. (2) 1 (1969), 303-306. · Zbl 0179.07301 [158] K. Ramachandra, On the number of Goldbach numbers in small intervals. J. Indian Math. Soc. (N.S.) 37 (1973), 157-170. · Zbl 0326.10041 [159] O. Ramaré, On Šnirel’man’s constant. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 22 (1995), 645-706. · Zbl 0851.11057 [160] R. A. Rankin, The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242-244. · JFM 64.0982.01 [161] R. A. Rankin, The difference between consecutive prime numbers. II. Proc. Cambridge Philos. Soc. 36 (1940), 255-266. · JFM 66.0163.01 [162] R. A. Rankin, The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331-332. · Zbl 0121.04705 [163] A. Rényi, On the representation of an even number as the sum of a single prime and a single almost-prime number. Doklady Akad. Nauk SSSR 56 (1947), 455-458 (Russian). · Zbl 0030.34501 [164] A. Rényi, On the representation of an even number as the sum of a single prime and a single almost-prime number. Izv. Akad. Nauk SSSR 12 (1948), 57-78 (Russian). · Zbl 0038.18601 [165] Sz. Gy. Révész, Effective oscillation theorems for a general class of real-valued remainder terms. Acta Arith. 49 (1988), 481-505. · Zbl 0587.10022 [166] G. Ricci, Su la congettura di Goldbach e la costante di Schnirelmann. Boll. Un. Math. Ital. 15 (1936), 183-187. · Zbl 0015.20101 [167] G. Ricci, Su la congettura di Goldbach e la costante di Schnirelmann, II, III. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (2) 6 (1937), 71-90, 91-116. [168] G. Ricci, La differenza di numeri primi consecutivi. Rendiconti Sem. Mat. Univ. e Politecnico Torino 11, 149-200. Corr. ibidem 12 (1952), p. 315. · Zbl 0048.27704 [169] G. Ricci, Sull’andamento della differenza di numeri primi consecutivi. Riv. Mat. Univ. Parma 5 (1954), 3-54. · Zbl 0058.27602 [170] H. Riesel, R. C. Vaughan, On sums of primes. Arkiv Mat. 21 (1983), 45-74. · Zbl 0516.10044 [171] L. Ripert, L’Intermédiaire des Math. 10 (1903), p. 66. [172] N. P. Romanov, On Goldbach’s problem. Tomsk, Izv. Mat. Tek. I (1935),34-38 (Russian). [173] A. A. Šanin, Determination of constants in the method of Brun-Šnirelman. Volzh. Mat. Sb. 2 (1964), 261-265 (Russian). · Zbl 0254.10045 [174] Y. Saouter, Checking the odd Goldbach conjecture up to $$10^{20}$$. Math. Comp. 67 (1998), 863-866. · Zbl 0913.11044 [175] A. Schinzel, W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185-208; Erratum: ibidem 5 p. 259. Erratum: ibidem 5, p. 259. · Zbl 0082.25802 [176] J.-C. Schlage-Puchta, The equation $$ω (n) = ω (n + 1)$$. Mathematika 50 (2003), no. 1-2, 99-101 (2005). · Zbl 1088.11071 [177] L. G. Schnirelman, On additive properties of numbers. Izv. Donsk. Politehn. Inst. 14 (1930), 3-28 (Russian). [178] L. G. Schnirelman, Über additive Eigenschaften von Zahlen. Math. Ann. 107 (1933), 649-690. · Zbl 0006.10402 [179] A. Selberg, The general sieve method and its place in prime number theory. Proc. Internat. Congress of Math., Cambridge, Mass. 1 (1950), 286-292. · Zbl 0049.31105 [180] A. Selberg, Collected Papers, Vol. II. Springer, Berlin, 1991. · Zbl 0729.11001 [181] C. L. Siegel, Über die Klassenzahl quadratischer Körper. Acta Arith. 1, 83-86. [Gesammelte Abhandlungen 1 (1936), 406-409, Springer, Berlin-Heidelberg, 1966.] [182] C. Spiro, Thesis. Urbana, 1981. [183] J. J. Sylvester, On the partition of an even number into two primes. Proc. London Math. Soc. 4 (1871), 4-6. [Collected Math. Papers, 2, 709-711, Cambridge, 1908.] [184] W. Tartakowski, Sur quelques sommes du type de Viggo Brun. C. R. Acad. Sci. URSS, N.S. 23 (1939a), 121-125. · JFM 65.1152.04 [185] W. Tartakowski, La méthode du crible approximatif “électif”. C. R. Acad. Sci. URSS, N. S. 23 (1939b), 126-129. [186] P. Turán, On the remainder term of the prime number formula I. Acta Math. Hungar. 1 (1950), 48-63. · Zbl 0040.01601 [187] S. Uchiyama, On the difference between consecutive prime numbers. Acta Arith. 27 (1975), 153-157. · Zbl 0301.10037 [188] C. J. de la Vallée-Poussin, Recherches analytiques sur la théorie des nombres premiers, I-III. Ann. Soc. Sci. Bruxelles 20 (1896), 183-256, 281-362, 363-397. [189] C. J. de la Vallée-Poussin, Sur la fonction $$ζ (s)$$ de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mem Couronnés de l’Acad. Roy. Sci. Bruxelles, 59 (1899). · JFM 30.0193.03 [190] R. C. Vaughan, On Goldbach’s problem. Acta Arith. 22 (1972), 21-48. · Zbl 0216.31603 [191] R. C. Vaughan, On the estimation of Schnirelman’s constant. J. Reine Angew. Math. 290 (1977), 93-108. · Zbl 0344.10028 [192] I. M. Vinogradov, Representation of an odd number as a sum of three prime numbers. Doklady Akad. Nauk. SSSR 15 (1937), 291-294 (Russian). [193] I. M. Vinogradov, A certain general property of the distribution of prime numbers. Mat. Sb. 7 (1940), 365-372 (Russian). [194] A. I. Vinogradov, Application of Riemann’s $$ζ (s)$$ to the Eratosthenian sieve. Mat. Sb. 41 (1957), 49-80; Corr.: ibidem, 415-416 (Russian). · Zbl 0079.27206 [195] A. I. Vinogradov, The density hypothesis for Dirichlet $$L$$-series. Izv. Akad. Nauk. SSSR 29 (1965), 903-934 (Russian). Corr.: ibidem, 30 (1966), 719-720. · Zbl 0128.04205 [196] I. M. Vinogradov, Special Variants of the Method of Trigonometric Sums. Nauka, Moskva, 1976 (Russian). · Zbl 0429.10023 [197] Tianze Wang, On Linnik’s almost Goldbach theorem. Sci. China Ser. A 42 (1999), 1155-1172. · Zbl 0978.11054 [198] Yuan Wang, On the representation of a large even integer as a sum of a product of at most 3 primes and a product of at most 4 primes. Acta Math. Sin. 6 (1956), 500-513 (Chinese). · Zbl 0068.26801 [199] Yuan Wang, On sieve methods and some of their applications, I. Acta Math. Sinica 8 (1958), 413-429 (Chinese). [English translation: Sci. Sinica 8 (1959), 357-381.] · Zbl 0136.33201 [200] Yuan Wang, Sheng-gang Xie, Kunrin Yu, Remarks on the difference of consecutive primes. Sci. Sinica 14 (1965), 786-788. · Zbl 0149.29003 [201] E. Waring, Meditationes Algebraicae. Cantabrigine. 1770. [3rd. ed. 1782; English translation: American Math. Soc., Providence, 1991.] [202] N. Watt, Short intervals almost all containing primes. Acta Arith. 72 (1995), 131-167. · Zbl 0832.11030 [203] E. Westzynthius, Über die Verteilung der Zahlen, die zu der $$n$$ ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingfors (5) 25 (1931), 1-37. · Zbl 0003.24601 [204] M. Y. Zhang, P. Ding, An improvement to the Schnirelman constant. J. China Univ. Sci. Techn. 13 (1983), Math. Issue, 31-53.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.