Liptaj, Andrej Statistical approach for highest precision numerical differentiation. (English) Zbl 07594627 Math. Comput. Simul. 203, 92-111 (2023). MSC: 65-XX 82-XX PDF BibTeX XML Cite \textit{A. Liptaj}, Math. Comput. Simul. 203, 92--111 (2023; Zbl 07594627) Full Text: DOI OpenURL
Izzo, Giuseppe; Jackiewicz, Zdzislaw Strong stability preserving Runge-Kutta and linear multistep methods. (English) Zbl 07648494 Bull. Iran. Math. Soc. 48, No. 6, 4029-4062 (2022). MSC: 65Lxx 65L05 65L06 PDF BibTeX XML Cite \textit{G. Izzo} and \textit{Z. Jackiewicz}, Bull. Iran. Math. Soc. 48, No. 6, 4029--4062 (2022; Zbl 07648494) Full Text: DOI OpenURL
Wen, Weibin; Liu, Tianhao; Duan, Shengyu A novel sub-step explicit time integration method based on cubic B-spline interpolation for linear and nonlinear dynamics. (English) Zbl 07625596 Comput. Math. Appl. 127, 154-180 (2022). MSC: 74S05 74S20 74H45 74S30 65L05 PDF BibTeX XML Cite \textit{W. Wen} et al., Comput. Math. Appl. 127, 154--180 (2022; Zbl 07625596) Full Text: DOI OpenURL
Jha, Navnit; Verma, Shikha A high-resolution convergent radial basis functions compact-FDD for boundary layer problems on a scattered mesh network appearing in viscous elastic fluid. (English) Zbl 07584762 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 244, 27 p. (2022). MSC: 41A25 34B16 65D15 PDF BibTeX XML Cite \textit{N. Jha} and \textit{S. Verma}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 244, 27 p. (2022; Zbl 07584762) Full Text: DOI OpenURL
Du, Qiang; Gu, Yiqi; Yang, Haizhao; Zhou, Chao The discovery of dynamics via linear multistep methods and deep learning: error estimation. (English) Zbl 07572365 SIAM J. Numer. Anal. 60, No. 4, 2014-2045 (2022). MSC: 65L06 65L09 65L20 68T07 PDF BibTeX XML Cite \textit{Q. Du} et al., SIAM J. Numer. Anal. 60, No. 4, 2014--2045 (2022; Zbl 07572365) Full Text: DOI arXiv OpenURL
Yuan, Si; Yuan, Quan Condensed Galerkin element of degree \(m\) for first-order initial-value problem with \(O(h^{2m+2})\) super-convergent nodal solutions. (English) Zbl 1492.65222 AMM, Appl. Math. Mech., Engl. Ed. 43, No. 4, 603-614 (2022). MSC: 65L60 65L05 65L20 PDF BibTeX XML Cite \textit{S. Yuan} and \textit{Q. Yuan}, AMM, Appl. Math. Mech., Engl. Ed. 43, No. 4, 603--614 (2022; Zbl 1492.65222) Full Text: DOI OpenURL
Roul, Pradip A robust numerical technique and its analysis for computing the price of an Asian option. (English) Zbl 1492.91431 J. Comput. Appl. Math. 416, Article ID 114527, 16 p. (2022). MSC: 91G60 65M70 65D07 65M12 65M15 91G20 PDF BibTeX XML Cite \textit{P. Roul}, J. Comput. Appl. Math. 416, Article ID 114527, 16 p. (2022; Zbl 1492.91431) Full Text: DOI OpenURL
Ramos, Higinio; Rufai, Mufutau Ajani An adaptive one-point second-derivative lobatto-type hybrid method for solving efficiently differential systems. (English) Zbl 07563039 Int. J. Comput. Math. 99, No. 8, 1687-1705 (2022). MSC: 65L05 65L20 PDF BibTeX XML Cite \textit{H. Ramos} and \textit{M. A. Rufai}, Int. J. Comput. Math. 99, No. 8, 1687--1705 (2022; Zbl 07563039) Full Text: DOI OpenURL
Adoghe, L. O.; Ojo, E. O.; Okoro, F. M. Block hybrid method using the operational matrices of Bernstein polynomial for the solution of third order ordinary differential equations. (English) Zbl 07549742 J. Niger. Math. Soc. 41, No. 1, 65-82 (2022). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{L. O. Adoghe} et al., J. Niger. Math. Soc. 41, No. 1, 65--82 (2022; Zbl 07549742) Full Text: Link OpenURL
Croci, Matteo; de Souza, Giacomo Rosilho Mixed-precision explicit stabilized Runge-Kutta methods for single- and multi-scale differential equations. (English) Zbl 07540376 J. Comput. Phys. 464, Article ID 111349, 30 p. (2022). MSC: 65Lxx 65Fxx 65Mxx PDF BibTeX XML Cite \textit{M. Croci} and \textit{G. R. de Souza}, J. Comput. Phys. 464, Article ID 111349, 30 p. (2022; Zbl 07540376) Full Text: DOI arXiv OpenURL
Becher, Simon; Matthies, Gunar Unified analysis for variational time discretizations of higher order and higher regularity applied to non-stiff ODEs. (English) Zbl 1485.65077 Numer. Algorithms 89, No. 4, 1533-1565 (2022). MSC: 65L05 65L20 65L60 PDF BibTeX XML Cite \textit{S. Becher} and \textit{G. Matthies}, Numer. Algorithms 89, No. 4, 1533--1565 (2022; Zbl 1485.65077) Full Text: DOI OpenURL
Rufai, Mufutau Ajani; Ramos, Higinio A variable step-size fourth-derivative hybrid block strategy for integrating third-order IVPs, with applications. (English) Zbl 1499.65290 Int. J. Comput. Math. 99, No. 2, 292-308 (2022). MSC: 65L05 65L20 PDF BibTeX XML Cite \textit{M. A. Rufai} and \textit{H. Ramos}, Int. J. Comput. Math. 99, No. 2, 292--308 (2022; Zbl 1499.65290) Full Text: DOI OpenURL
Khandelwal, Pooja; Khan, Arshad; Sultana, Talat Discrete cubic spline technique for solving one-dimensional Bratu’s problem. (English) Zbl 1482.34069 Asian-Eur. J. Math. 15, No. 1, Article ID 2250011, 12 p. (2022). MSC: 34B15 65D07 PDF BibTeX XML Cite \textit{P. Khandelwal} et al., Asian-Eur. J. Math. 15, No. 1, Article ID 2250011, 12 p. (2022; Zbl 1482.34069) Full Text: DOI OpenURL
Ramos, Higinio; Kaur, Anurag; Kanwar, V. Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations. (English) Zbl 1499.65575 Comput. Appl. Math. 41, No. 1, Paper No. 34, 28 p. (2022). MSC: 65M70 65M06 65N35 65D07 35F50 35Q53 PDF BibTeX XML Cite \textit{H. Ramos} et al., Comput. Appl. Math. 41, No. 1, Paper No. 34, 28 p. (2022; Zbl 1499.65575) Full Text: DOI OpenURL
Ngondiep, Eric A robust numerical two-level second-order explicit approach to predicting the spread of Covid-2019 pandemic with undetected infectious cases. (English) Zbl 1481.92006 J. Comput. Appl. Math. 403, Article ID 113852, 19 p. (2022). MSC: 92-08 65L05 65L20 92D30 PDF BibTeX XML Cite \textit{E. Ngondiep}, J. Comput. Appl. Math. 403, Article ID 113852, 19 p. (2022; Zbl 1481.92006) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K. A superconvergent B-spline technique for second order nonlinear boundary value problems. (English) Zbl 07428116 Appl. Math. Comput. 414, Article ID 126615, 24 p. (2022). MSC: 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, Appl. Math. Comput. 414, Article ID 126615, 24 p. (2022; Zbl 07428116) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K. An efficient numerical method based on redefined cubic B-spline basis functions for pricing Asian options. (English) Zbl 1471.91620 J. Comput. Appl. Math. 401, Article ID 113774, 17 p. (2022). MSC: 91G60 65M70 91G20 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, J. Comput. Appl. Math. 401, Article ID 113774, 17 p. (2022; Zbl 1471.91620) Full Text: DOI OpenURL
Yakubu, S. D.; Yahaya, Y. A.; Lawal, K. O. 3-step block hybrid linear multistep methods for solution of special second order ordinary differential equations. (English) Zbl 1482.65130 J. Niger. Math. Soc. 40, No. 2, 149-160 (2021). MSC: 65L60 PDF BibTeX XML Cite \textit{S. D. Yakubu} et al., J. Niger. Math. Soc. 40, No. 2, 149--160 (2021; Zbl 1482.65130) Full Text: Link OpenURL
Okor, T.; Nwachukwu, G. C.; Adeyeye, F. J. Robust extended trapezoidal rules for two-point stiff and non-stiff boundary value problems. (English) Zbl 1482.65121 J. Niger. Math. Soc. 40, No. 2, 79-95 (2021). MSC: 65L10 65L05 65L06 PDF BibTeX XML Cite \textit{T. Okor} et al., J. Niger. Math. Soc. 40, No. 2, 79--95 (2021; Zbl 1482.65121) Full Text: Link OpenURL
Gufler, Veit; Wehrle, Erich; Zwölfer, Andreas A review of flexible multibody dynamics for gradient-based design optimization. (English) Zbl 1483.70023 Multibody Syst. Dyn. 53, No. 4, 379-409 (2021). MSC: 70E55 PDF BibTeX XML Cite \textit{V. Gufler} et al., Multibody Syst. Dyn. 53, No. 4, 379--409 (2021; Zbl 1483.70023) Full Text: DOI OpenURL
Lorenzon, Denis; Elaskar, Sergio Using linear multistep methods for the time stepping in Vlasov-Poisson simulations. (English) Zbl 1476.82010 Comput. Appl. Math. 40, No. 8, Paper No. 289, 22 p. (2021). MSC: 82D10 35A24 PDF BibTeX XML Cite \textit{D. Lorenzon} and \textit{S. Elaskar}, Comput. Appl. Math. 40, No. 8, Paper No. 289, 22 p. (2021; Zbl 1476.82010) Full Text: DOI OpenURL
Umaru, Mohammed; Garba, Jamiu; Semenov, M. E. One-step second derivative block intra-step method for stiff system of ordinary differential equations one-step second derivative. (English) Zbl 07430788 J. Niger. Math. Soc. 40, No. 1, 47-57 (2021). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{M. Umaru} et al., J. Niger. Math. Soc. 40, No. 1, 47--57 (2021; Zbl 07430788) Full Text: Link OpenURL
Kabre, Julienne; Sheng, Qin A preservative splitting approximation of the solution of a variable coefficient quenching problem. (English) Zbl 07411544 Comput. Math. Appl. 100, 62-73 (2021). MSC: 65M20 35B40 35K55 35K60 35K57 PDF BibTeX XML Cite \textit{J. Kabre} and \textit{Q. Sheng}, Comput. Math. Appl. 100, 62--73 (2021; Zbl 07411544) Full Text: DOI OpenURL
Tyulenev, A. V. An example of noncomputability of exponents of a system of ordinary differential equations. (English. Russian original) Zbl 07392395 Mosc. Univ. Math. Bull. 76, No. 2, 53-59 (2021); translation from Vestn. Mosk. Univ., Ser. I 76, No. 2, 10-15 (2021). MSC: 03Dxx 03-XX 03Fxx PDF BibTeX XML Cite \textit{A. V. Tyulenev}, Mosc. Univ. Math. Bull. 76, No. 2, 53--59 (2021; Zbl 07392395); translation from Vestn. Mosk. Univ., Ser. I 76, No. 2, 10--15 (2021) Full Text: DOI OpenURL
Karepova, E. D.; Adaev, I. R.; Shan’ko, Yu. V. The techniques for constructing a family of symmetric multistep methods. (English) Zbl 1472.65087 Lobachevskii J. Math. 42, No. 7, 1675-1685 (2021). MSC: 65L06 65L20 PDF BibTeX XML Cite \textit{E. D. Karepova} et al., Lobachevskii J. Math. 42, No. 7, 1675--1685 (2021; Zbl 1472.65087) Full Text: DOI OpenURL
Zhang, Lin; Ge, Yongbin Numerical solution of nonlinear advection diffusion reaction equation using high-order compact difference method. (English) Zbl 1475.65089 Appl. Numer. Math. 166, 127-145 (2021). MSC: 65M06 65N06 65B05 65H10 65F05 65M12 35K57 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{Y. Ge}, Appl. Numer. Math. 166, 127--145 (2021; Zbl 1475.65089) Full Text: DOI OpenURL
Kumar, Neelesh A new high order accurate, finite difference method on quasi-variable meshes for the numerical solution of three dimensional Poisson equation. (English) Zbl 1468.65176 Differ. Equ. Dyn. Syst. 29, No. 1, 21-34 (2021). MSC: 65N06 35J25 65N12 35J05 PDF BibTeX XML Cite \textit{N. Kumar}, Differ. Equ. Dyn. Syst. 29, No. 1, 21--34 (2021; Zbl 1468.65176) Full Text: DOI OpenURL
Li, Yunfei; Li, Shoufu Classical theory of linear multistep methods for Volterra functional differential equations. (English) Zbl 1465.65056 Discrete Dyn. Nat. Soc. 2021, Article ID 6633554, 15 p. (2021). MSC: 65L03 65L06 34K05 PDF BibTeX XML Cite \textit{Y. Li} and \textit{S. Li}, Discrete Dyn. Nat. Soc. 2021, Article ID 6633554, 15 p. (2021; Zbl 1465.65056) Full Text: DOI OpenURL
Keller, Rachael T.; Du, Qiang Discovery of dynamics using linear multistep methods. (English) Zbl 1466.65050 SIAM J. Numer. Anal. 59, No. 1, 429-455 (2021). MSC: 65L06 65L09 65L20 68T99 PDF BibTeX XML Cite \textit{R. T. Keller} and \textit{Q. Du}, SIAM J. Numer. Anal. 59, No. 1, 429--455 (2021; Zbl 1466.65050) Full Text: DOI arXiv OpenURL
Mohd Ijam, Hazizah; Ibrahim, Zarina Bibi; Abdul Majid, Zanariah; Senu, Norazak Stability analysis of a diagonally implicit scheme of block backward differentiation formula for stiff pharmacokinetics models. (English) Zbl 1486.65071 Adv. Difference Equ. 2020, Paper No. 400, 22 p. (2020). MSC: 65L04 65L20 65D25 PDF BibTeX XML Cite \textit{H. Mohd Ijam} et al., Adv. Difference Equ. 2020, Paper No. 400, 22 p. (2020; Zbl 1486.65071) Full Text: DOI OpenURL
Olabode, B. T.; Momoh, A. L. Chebyshev hybrid multistep method for directly solving second-order initial and boundary value problems. (English) Zbl 1476.65137 J. Niger. Math. Soc. 39, No. 1, 97-115 (2020). MSC: 65L06 PDF BibTeX XML Cite \textit{B. T. Olabode} and \textit{A. L. Momoh}, J. Niger. Math. Soc. 39, No. 1, 97--115 (2020; Zbl 1476.65137) Full Text: Link OpenURL
Balasubramani, N.; Prasad, M. Guru Prem; Natesan, S. Fractal quintic spline method for nonlinear boundary-value problems. (English) Zbl 1488.28009 Hacet. J. Math. Stat. 49, No. 6, 1885-1903 (2020). MSC: 28A80 34B15 65D07 PDF BibTeX XML Cite \textit{N. Balasubramani} et al., Hacet. J. Math. Stat. 49, No. 6, 1885--1903 (2020; Zbl 1488.28009) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K. Numerical solution of doubly singular boundary value problems by finite difference method. (English) Zbl 1476.65144 Comput. Appl. Math. 39, No. 4, Paper No. 302, 25 p. (2020). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, Comput. Appl. Math. 39, No. 4, Paper No. 302, 25 p. (2020; Zbl 1476.65144) Full Text: DOI OpenURL
Wong, Patricia J. Y. Discrete splines and its applications. (English) Zbl 1477.65033 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 101-141 (2020). MSC: 65D07 41A15 65L10 PDF BibTeX XML Cite \textit{P. J. Y. Wong}, Springer Proc. Math. Stat. 341, 101--141 (2020; Zbl 1477.65033) Full Text: DOI OpenURL
Karepova, Evgenia D.; Adaev, Iliya R.; Shan’ko, Yury V. Accuracy of symmetric multi-step methods for the numerical modelling of satellite motion. (English) Zbl 07334135 J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 781-791 (2020). MSC: 65Lxx 34-XX 65Jxx 65-XX PDF BibTeX XML Cite \textit{E. D. Karepova} et al., J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 781--791 (2020; Zbl 07334135) Full Text: DOI MNR OpenURL
Farajeyan, Karim; Rashidinia, Jalil; Jalilian, Reza; Rafati, Maleki Nader Application of spline to approximate the solution of singularly perturbed boundary-value problems. (English) Zbl 1474.65240 Comput. Methods Differ. Equ. 8, No. 2, 373-388 (2020). MSC: 65L11 65L10 65D20 65D07 PDF BibTeX XML Cite \textit{K. Farajeyan} et al., Comput. Methods Differ. Equ. 8, No. 2, 373--388 (2020; Zbl 1474.65240) Full Text: DOI OpenURL
Akinfenwa, Olusheye Aremu Akin; Abdulganiy, R. I.; Akinnukawe, B. I.; Okunuga, Solomon A. Seventh order hybrid block method for solution of first order stiff systems of initial value problems. (English) Zbl 1461.65202 J. Egypt. Math. Soc. 28, Paper No. 34, 11 p. (2020). MSC: 65L04 65L06 65L20 34A34 PDF BibTeX XML Cite \textit{O. A. A. Akinfenwa} et al., J. Egypt. Math. Soc. 28, Paper No. 34, 11 p. (2020; Zbl 1461.65202) Full Text: DOI OpenURL
Zlatev, Zahari; Dimov, Ivan; Faragó, István; Georgiev, Krassimir; Havasi, Ágnes Explicit Runge-Kutta methods combined with advanced versions of the Richardson extrapolation. (English) Zbl 1455.65110 Comput. Methods Appl. Math. 20, No. 4, 739-762 (2020). MSC: 65L05 65L06 65L04 PDF BibTeX XML Cite \textit{Z. Zlatev} et al., Comput. Methods Appl. Math. 20, No. 4, 739--762 (2020; Zbl 1455.65110) Full Text: DOI OpenURL
Farhan, M.; Omar, Z.; Mebarek-Oudina, F.; Raza, J.; Shah, Z.; Choudhari, R. V.; Makinde, O. D. Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator. (English) Zbl 1441.65063 Comput. Math. Model. 31, No. 1, 116-132 (2020). MSC: 65L10 34C15 PDF BibTeX XML Cite \textit{M. Farhan} et al., Comput. Math. Model. 31, No. 1, 116--132 (2020; Zbl 1441.65063) Full Text: DOI OpenURL
Balasubramani, N.; Prasad, M. Guru Prem; Natesan, S. Fractal cubic spline methods for singular boundary-value problems. (English) Zbl 07210598 Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 47, 18 p. (2020). MSC: 65-XX 28A80 65D07 65L10 PDF BibTeX XML Cite \textit{N. Balasubramani} et al., Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 47, 18 p. (2020; Zbl 07210598) Full Text: DOI OpenURL
Marciniak, Andrzej; Jankowska, Malgorzata A. Interval methods of Adams-Bashforth type with variable step sizes. (English) Zbl 07202185 Numer. Algorithms 84, No. 2, 651-678 (2020). MSC: 65-XX PDF BibTeX XML Cite \textit{A. Marciniak} and \textit{M. A. Jankowska}, Numer. Algorithms 84, No. 2, 651--678 (2020; Zbl 07202185) Full Text: DOI OpenURL
Zhu, Lin; Sheng, Qin A note on the adaptive numerical solution of a Riemann-Liouville space-fractional Kawarada problem. (English) Zbl 1435.65136 J. Comput. Appl. Math. 374, Article ID 112714, 14 p. (2020). MSC: 65M06 65M12 26A33 35R11 80A25 35Q79 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{Q. Sheng}, J. Comput. Appl. Math. 374, Article ID 112714, 14 p. (2020; Zbl 1435.65136) Full Text: DOI OpenURL
Alexandropoulos, Stamatios-Aggelos N.; Pardalos, Panos M.; Vrahatis, Michael N. Dynamic search trajectory methods for global optimization. (English) Zbl 1461.65113 Ann. Math. Artif. Intell. 88, No. 1-3, 3-37 (2020). MSC: 65K05 65K10 65L05 68T05 68T20 PDF BibTeX XML Cite \textit{S.-A. N. Alexandropoulos} et al., Ann. Math. Artif. Intell. 88, No. 1--3, 3--37 (2020; Zbl 1461.65113) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K. A new higher order compact finite difference method for generalised Black-Scholes partial differential equation: European call option. (English) Zbl 1418.91602 J. Comput. Appl. Math. 363, 464-484 (2020). MSC: 91G60 65M06 65M12 91G20 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, J. Comput. Appl. Math. 363, 464--484 (2020; Zbl 1418.91602) Full Text: DOI OpenURL
Jha, Navnit; Singh, Bhagat Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation. (English) Zbl 1485.65114 Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019). MSC: 65N06 65N12 65F10 35J25 35J65 PDF BibTeX XML Cite \textit{N. Jha} and \textit{B. Singh}, Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019; Zbl 1485.65114) Full Text: DOI OpenURL
Oates, C. J.; Sullivan, T. J. A modern retrospective on probabilistic numerics. (English) Zbl 1431.60002 Stat. Comput. 29, No. 6, 1335-1351 (2019). MSC: 60-03 62-03 65-03 01A60 01A65 65C20 PDF BibTeX XML Cite \textit{C. J. Oates} and \textit{T. J. Sullivan}, Stat. Comput. 29, No. 6, 1335--1351 (2019; Zbl 1431.60002) Full Text: DOI arXiv OpenURL
Ogunfeyitimi, S. E.; Ikhile, M. N. O. Second derivative generalized extended backward differentiation formulas for stiff problems. (English) Zbl 1432.93138 J. Korean Soc. Ind. Appl. Math. 23, No. 3, 179-202 (2019). MSC: 93C15 65L04 PDF BibTeX XML Cite \textit{S. E. Ogunfeyitimi} and \textit{M. N. O. Ikhile}, J. Korean Soc. Ind. Appl. Math. 23, No. 3, 179--202 (2019; Zbl 1432.93138) Full Text: DOI OpenURL
Prasad Goura, V. M. K.; Roul, Pradip Erratum to: “B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems”. (English) Zbl 1429.65162 Appl. Math. Comput. 361, 198-201 (2019). MSC: 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{V. M. K. Prasad Goura} and \textit{P. Roul}, Appl. Math. Comput. 361, 198--201 (2019; Zbl 1429.65162) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K.; Agarwal, Ravi A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions. (English) Zbl 1429.65165 Appl. Math. Comput. 350, 283-304 (2019). MSC: 65L10 34B16 65L12 PDF BibTeX XML Cite \textit{P. Roul} et al., Appl. Math. Comput. 350, 283--304 (2019; Zbl 1429.65165) Full Text: DOI OpenURL
Beauregard, Matthew A. Numerical approximations to a fractional Kawarada quenching problem. (English) Zbl 1429.65178 Appl. Math. Comput. 349, 14-22 (2019). MSC: 65M06 35R11 65M12 35K57 PDF BibTeX XML Cite \textit{M. A. Beauregard}, Appl. Math. Comput. 349, 14--22 (2019; Zbl 1429.65178) Full Text: DOI OpenURL
Modebei, Mark I.; Adeniyi, Rapheal B.; Jator, Samuel N.; Ramos, Higinio A block hybrid integrator for numerically solving fourth-order initial value problems. (English) Zbl 1429.65147 Appl. Math. Comput. 346, 680-694 (2019). MSC: 65L05 34A45 65L06 65L10 65L12 PDF BibTeX XML Cite \textit{M. I. Modebei} et al., Appl. Math. Comput. 346, 680--694 (2019; Zbl 1429.65147) Full Text: DOI OpenURL
Roul, Pradip; Prasad Goura, V. M. K. B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems. (English) Zbl 1429.65164 Appl. Math. Comput. 341, 428-450 (2019); erratum, ibid. 361, 198-201 (2019). MSC: 65L10 34B16 65L60 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, Appl. Math. Comput. 341, 428--450 (2019; Zbl 1429.65164) Full Text: DOI OpenURL
Higham, Nicholas J.; Mary, Theo A new approach to probabilistic rounding error analysis. (English) Zbl 07123205 SIAM J. Sci. Comput. 41, No. 5, A2815-A2835 (2019). MSC: 65G50 65F05 PDF BibTeX XML Cite \textit{N. J. Higham} and \textit{T. Mary}, SIAM J. Sci. Comput. 41, No. 5, A2815--A2835 (2019; Zbl 07123205) Full Text: DOI OpenURL
Abdelrahim, Ra’ft; Omar, Z.; Ala’yed, O.; Batiha, B. Hybrid third derivative block method for the solution of general second order initial value problems with generalized one step point. (English) Zbl 1438.65146 Eur. J. Pure Appl. Math. 12, No. 3, 1199-1214 (2019). MSC: 65L05 65L06 65L20 PDF BibTeX XML Cite \textit{R. Abdelrahim} et al., Eur. J. Pure Appl. Math. 12, No. 3, 1199--1214 (2019; Zbl 1438.65146) Full Text: Link OpenURL
Gunarathna, W. A.; Nasir, H. M.; Daundasekera, W. B. An explicit form for higher order approximations of fractional derivatives. (English) Zbl 1447.35353 Appl. Numer. Math. 143, 51-60 (2019). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{W. A. Gunarathna} et al., Appl. Numer. Math. 143, 51--60 (2019; Zbl 1447.35353) Full Text: DOI arXiv OpenURL
Costabile, Francesco Aldo; Caira, Rosanna; Gualtieri, Maria Italia A block hybrid method for non-linear second order boundary value problems. (English) Zbl 1409.65047 Mediterr. J. Math. 16, No. 1, Paper No. 17, 18 p. (2019). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{F. A. Costabile} et al., Mediterr. J. Math. 16, No. 1, Paper No. 17, 18 p. (2019; Zbl 1409.65047) Full Text: DOI OpenURL
Shokri, Ali; Khalsaraei, Mohammad Mehdizadeh; Tahmourasi, Mortaza; Garcia-Rubio, Raquel A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and IVPs with oscillating solutions. (English) Zbl 1415.65165 Numer. Algorithms 80, No. 2, 557-593 (2019). MSC: 65L06 65L05 65L20 PDF BibTeX XML Cite \textit{A. Shokri} et al., Numer. Algorithms 80, No. 2, 557--593 (2019; Zbl 1415.65165) Full Text: DOI OpenURL
Shokri, A.; Saadat, H.; Khodadadi, A. A new high order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. (English) Zbl 1455.65226 Iran. J. Math. Sci. Inform. 13, No. 1, 111-129 (2018). MSC: 65P10 PDF BibTeX XML Cite \textit{A. Shokri} et al., Iran. J. Math. Sci. Inform. 13, No. 1, 111--129 (2018; Zbl 1455.65226) Full Text: Link OpenURL
Zhang, Kewei; Crooks, Elaine; Orlando, Antonio Compensated convexity methods for approximations and interpolations of sampled functions in Euclidean spaces: applications to contour lines, sparse data, and inpainting. (English) Zbl 1419.90088 SIAM J. Imaging Sci. 11, No. 4, 2368-2428 (2018). MSC: 90C25 90C26 49J52 52A41 65K10 PDF BibTeX XML Cite \textit{K. Zhang} et al., SIAM J. Imaging Sci. 11, No. 4, 2368--2428 (2018; Zbl 1419.90088) Full Text: DOI arXiv OpenURL
Mohammadi, Reza High-order exponential spline method for pricing European options. (English) Zbl 1419.91653 J. Difference Equ. Appl. 24, No. 11, 1783-1807 (2018). MSC: 91G60 65M06 91G20 PDF BibTeX XML Cite \textit{R. Mohammadi}, J. Difference Equ. Appl. 24, No. 11, 1783--1807 (2018; Zbl 1419.91653) Full Text: DOI OpenURL
Rannacher, Rolf On the numerical approximability of stable dynamical systems. (English) Zbl 1405.65084 Vietnam J. Math. 46, No. 4, 723-743 (2018). MSC: 65L05 65L20 65L06 65L70 34D20 PDF BibTeX XML Cite \textit{R. Rannacher}, Vietnam J. Math. 46, No. 4, 723--743 (2018; Zbl 1405.65084) Full Text: DOI OpenURL
Oladejo, H. B.; Jator, S. N.; Areo, E. A. Boundary value technique based on a fifth derivative method of order 10 for fourth order initial and boundary value problems. (English) Zbl 1413.65274 Afr. Mat. 29, No. 5-6, 699-718 (2018). MSC: 65L06 65L05 65L10 65L20 PDF BibTeX XML Cite \textit{H. B. Oladejo} et al., Afr. Mat. 29, No. 5--6, 699--718 (2018; Zbl 1413.65274) Full Text: DOI OpenURL
Lodhi, Ram Kishun; Mishra, Hradyesh Kumar Computational approach for fourth-order self-adjoint singularly perturbed boundary value problems via non-polynomial quintic spline. (English) Zbl 1397.65111 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 2, 887-894 (2018). MSC: 65L11 65L10 65L60 65D07 PDF BibTeX XML Cite \textit{R. K. Lodhi} and \textit{H. K. Mishra}, Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 2, 887--894 (2018; Zbl 1397.65111) Full Text: DOI OpenURL
Zahra, W. K.; Van Daele, M. Discrete spline solution of singularly perturbed problem with two small parameters on a Shishkin-type mesh. (English) Zbl 1397.65112 Comput. Math. Model. 29, No. 3, 367-381 (2018). MSC: 65L11 65L10 65L20 65L50 PDF BibTeX XML Cite \textit{W. K. Zahra} and \textit{M. Van Daele}, Comput. Math. Model. 29, No. 3, 367--381 (2018; Zbl 1397.65112) Full Text: DOI OpenURL
D’Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice Numerical preservation of long-term dynamics by stochastic two-step methods. (English) Zbl 1396.65011 Discrete Contin. Dyn. Syst., Ser. B 23, No. 7, 2763-2773 (2018). MSC: 65C30 PDF BibTeX XML Cite \textit{R. D'Ambrosio} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 7, 2763--2773 (2018; Zbl 1396.65011) Full Text: DOI OpenURL
Bilotta, Antonio; Morassi, Antonino; Turco, Emilio The use of quasi-isospectral operators for damage detection in rods. (English) Zbl 1390.74084 Meccanica 53, No. 1-2, 319-345 (2018). MSC: 74H45 74G75 74K10 74S05 PDF BibTeX XML Cite \textit{A. Bilotta} et al., Meccanica 53, No. 1--2, 319--345 (2018; Zbl 1390.74084) Full Text: DOI Link OpenURL
Jha, Navnit; Gopal, Venu; Singh, Bhagat A family of compact finite difference formulations for three-space dimensional nonlinear Poisson’s equations in Cartesian coordinates. (English) Zbl 1387.35165 Differ. Equ. Dyn. Syst. 26, No. 1-3, 105-123 (2018). MSC: 35J25 35J60 35J65 65N06 PDF BibTeX XML Cite \textit{N. Jha} et al., Differ. Equ. Dyn. Syst. 26, No. 1--3, 105--123 (2018; Zbl 1387.35165) Full Text: DOI OpenURL
Mohammadi, Reza Smooth quintic spline approximation for nonlinear Schrödinger equations with variable coefficients in one and two dimensions. (English) Zbl 1380.65031 Chaos Solitons Fractals 107, 204-215 (2018). MSC: 65D07 35Q55 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{R. Mohammadi}, Chaos Solitons Fractals 107, 204--215 (2018; Zbl 1380.65031) Full Text: DOI OpenURL
Constantinescu, Emil M. Generalizing global error estimation for ordinary differential equations by using coupled time-stepping methods. (English) Zbl 1377.65088 J. Comput. Appl. Math. 332, 140-158 (2018). MSC: 65L06 65L70 34A34 65L05 PDF BibTeX XML Cite \textit{E. M. Constantinescu}, J. Comput. Appl. Math. 332, 140--158 (2018; Zbl 1377.65088) Full Text: DOI Link OpenURL
Akinfenwa, O. A.; Abdulganiy, R. I.; Okunuga, S. A.; Irechukwu, V. Simpson’s \(\frac{3}{8}\)-type block method for stiff systems of ordinary differential equations. (English) Zbl 1474.65201 J. Niger. Math. Soc. 36, No. 3, 503-514 (2017). MSC: 65L04 65L05 65L06 PDF BibTeX XML Cite \textit{O. A. Akinfenwa} et al., J. Niger. Math. Soc. 36, No. 3, 503--514 (2017; Zbl 1474.65201) Full Text: Link OpenURL
Li, Cui; Zhang, Chengjian The extended generalized Störmer-Cowell methods for second-order delay boundary value problems. (English) Zbl 1411.65085 Appl. Math. Comput. 294, 87-95 (2017). MSC: 65L03 65L10 34K10 PDF BibTeX XML Cite \textit{C. Li} and \textit{C. Zhang}, Appl. Math. Comput. 294, 87--95 (2017; Zbl 1411.65085) Full Text: DOI OpenURL
Alkasassbeh, Mohammad; Omar, Zurni Implicit one-step block hybrid third-derivative method for the direct solution of initial value problems of second-order ordinary differential equations. (English) Zbl 1437.65064 J. Appl. Math. 2017, Article ID 8510948, 8 p. (2017). MSC: 65L05 PDF BibTeX XML Cite \textit{M. Alkasassbeh} and \textit{Z. Omar}, J. Appl. Math. 2017, Article ID 8510948, 8 p. (2017; Zbl 1437.65064) Full Text: DOI OpenURL
Alkasassbeh, Mohammad; Omar, Zurni Generalized hybrid one-step block method involving fifth derivative for solving fourth-order ordinary differential equation directly. (English) Zbl 1437.65063 J. Appl. Math. 2017, Article ID 7637651, 14 p. (2017). MSC: 65L05 PDF BibTeX XML Cite \textit{M. Alkasassbeh} and \textit{Z. Omar}, J. Appl. Math. 2017, Article ID 7637651, 14 p. (2017; Zbl 1437.65063) Full Text: DOI OpenURL
Jha, Navnit; Kumar, Neelesh A fourth-order accurate quasi-variable mesh compact finite-difference scheme for two-space dimensional convection-diffusion problems. (English) Zbl 1422.65316 Adv. Difference Equ. 2017, Paper No. 64, 13 p. (2017). MSC: 65N06 35J57 65N12 PDF BibTeX XML Cite \textit{N. Jha} and \textit{N. Kumar}, Adv. Difference Equ. 2017, Paper No. 64, 13 p. (2017; Zbl 1422.65316) Full Text: DOI OpenURL
Adeyeye, Oluwaseun; Omar, Zurni Solving nonlinear fourth-order boundary value problems using a numerical approach: \((m + 1)\)th-step block method. (English) Zbl 1487.65089 Int. J. Differ. Equ. 2017, Article ID 4925914, 9 p. (2017). MSC: 65L10 PDF BibTeX XML Cite \textit{O. Adeyeye} and \textit{Z. Omar}, Int. J. Differ. Equ. 2017, Article ID 4925914, 9 p. (2017; Zbl 1487.65089) Full Text: DOI OpenURL
Jha, Navnit; Mohanty, Ranjan K.; Kumar, Neelesh Compact-FDM for mildly nonlinear two-space dimensional elliptic BVPs in polar coordinate system and its convergence theory. (English) Zbl 1398.65265 Int. J. Appl. Comput. Math. 3, No. 1, 255-270 (2017). MSC: 65N06 65N12 35J25 35J57 PDF BibTeX XML Cite \textit{N. Jha} et al., Int. J. Appl. Comput. Math. 3, No. 1, 255--270 (2017; Zbl 1398.65265) Full Text: DOI OpenURL
Zahra, W. K.; Hikal, M. M. Non standard finite difference method for solving variable order fractional optimal control problems. (English) Zbl 1387.93095 J. Vib. Control 23, No. 6, 948-958 (2017). MSC: 93C30 26A33 65L12 PDF BibTeX XML Cite \textit{W. K. Zahra} and \textit{M. M. Hikal}, J. Vib. Control 23, No. 6, 948--958 (2017; Zbl 1387.93095) Full Text: DOI OpenURL
Khandelwal, Pooja; Khan, Arshad Singularly perturbed convection-diffusion boundary value problems with two small parameters using nonpolynomial spline technique. (English) Zbl 1453.65172 Math. Sci., Springer 11, No. 2, 119-126 (2017). MSC: 65L10 65D07 65L11 65L60 65L20 PDF BibTeX XML Cite \textit{P. Khandelwal} and \textit{A. Khan}, Math. Sci., Springer 11, No. 2, 119--126 (2017; Zbl 1453.65172) Full Text: DOI OpenURL
Heris, Mahdi Saedshoar; Javidi, Mohammad On FBDF5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. (English) Zbl 1385.65044 Mediterr. J. Math. 14, No. 3, Paper No. 134, 19 p. (2017). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 65L03 65L06 65L20 34K37 34B27 65L07 34K28 34K06 PDF BibTeX XML Cite \textit{M. S. Heris} and \textit{M. Javidi}, Mediterr. J. Math. 14, No. 3, Paper No. 134, 19 p. (2017; Zbl 1385.65044) Full Text: DOI OpenURL
Jando, Dörte Efficient goal-oriented global error estimators for BDF methods using discrete adjoints. (English) Zbl 1372.65206 J. Comput. Appl. Math. 316, 195-212 (2017). MSC: 65L05 65L06 65L60 65L20 65L70 PDF BibTeX XML Cite \textit{D. Jando}, J. Comput. Appl. Math. 316, 195--212 (2017; Zbl 1372.65206) Full Text: DOI OpenURL
Jha, Navnit; Kumar, Neelesh; Sharma, Kapil K. A third (four) order accurate, nine-point compact scheme for mildly-nonlinear elliptic equations in two space variables. (English) Zbl 1371.65111 Differ. Equ. Dyn. Syst. 25, No. 2, 223-237 (2017). MSC: 65N06 35J60 65N15 65N12 65N50 PDF BibTeX XML Cite \textit{N. Jha} et al., Differ. Equ. Dyn. Syst. 25, No. 2, 223--237 (2017; Zbl 1371.65111) Full Text: DOI OpenURL
Prusov, Vitaliy A.; Doroshenko, Anatoliy Yu. Numerical method to solve the Cauchy problem with previous history. (English. Russian original) Zbl 1444.65034 Cybern. Syst. Anal. 53, No. 1, 34-56 (2017); translation from Kibern. Sist. Anal. 2017, No. 1, 42-67 (2017). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65L06 65L05 65L07 65L20 86A08 PDF BibTeX XML Cite \textit{V. A. Prusov} and \textit{A. Yu. Doroshenko}, Cybern. Syst. Anal. 53, No. 1, 34--56 (2017; Zbl 1444.65034); translation from Kibern. Sist. Anal. 2017, No. 1, 42--67 (2017) Full Text: DOI OpenURL
Braś, Michał; Cardone, Angelamaria; Jackiewicz, Zdzisław; Welfert, Bruno Order reduction phenomenon for general linear methods. (English) Zbl 1368.65111 Appl. Numer. Math. 119, 94-114 (2017). MSC: 65L06 65L05 34A34 65L20 65L04 PDF BibTeX XML Cite \textit{M. Braś} et al., Appl. Numer. Math. 119, 94--114 (2017; Zbl 1368.65111) Full Text: DOI OpenURL
Akinfenwa, Olusheye Third derivative hybrid block integrator for solution of stiff systems of initial value problems. (English) Zbl 1367.65105 Afr. Mat. 28, No. 3-4, 629-641 (2017). MSC: 65L05 65L04 34A34 65L06 65L60 65L20 PDF BibTeX XML Cite \textit{O. Akinfenwa}, Afr. Mat. 28, No. 3--4, 629--641 (2017; Zbl 1367.65105) Full Text: DOI OpenURL
Saedshoar Heris, M.; Javidi, M. On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. (English) Zbl 1367.65103 Appl. Numer. Math. 118, 203-220 (2017). MSC: 65L03 34A08 34K28 65L20 PDF BibTeX XML Cite \textit{M. Saedshoar Heris} and \textit{M. Javidi}, Appl. Numer. Math. 118, 203--220 (2017; Zbl 1367.65103) Full Text: DOI OpenURL
Beauregard, Matthew A.; Padgett, Joshua; Parshad, Rana A nonlinear splitting algorithm for systems of partial differential equations with self-diffusion. (English) Zbl 1367.92093 J. Comput. Appl. Math. 321, 8-25 (2017). MSC: 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{M. A. Beauregard} et al., J. Comput. Appl. Math. 321, 8--25 (2017; Zbl 1367.92093) Full Text: DOI arXiv OpenURL
Bhaumik, Prithwish; Ghosal, Subhashis Bayesian inference for higher-order ordinary differential equation models. (English) Zbl 1365.62261 J. Multivariate Anal. 157, 103-114 (2017). MSC: 62J02 62G08 62F15 62G20 62F12 PDF BibTeX XML Cite \textit{P. Bhaumik} and \textit{S. Ghosal}, J. Multivariate Anal. 157, 103--114 (2017; Zbl 1365.62261) Full Text: DOI arXiv OpenURL
Ramos, Higinio; Mehta, Shubham; Vigo-Aguiar, J. A unified approach for the development of \(k\)-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. (English) Zbl 1357.65092 J. Comput. Appl. Math. 318, 550-564 (2017). MSC: 65L05 65L06 34A34 PDF BibTeX XML Cite \textit{H. Ramos} et al., J. Comput. Appl. Math. 318, 550--564 (2017; Zbl 1357.65092) Full Text: DOI OpenURL
Ndukum, P. L.; Biala, T. A.; Jator, S. N.; Adeniyi, R. B. On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems. (English) Zbl 1355.65089 Numer. Algorithms 74, No. 1, 267-287 (2017). MSC: 65L05 65L06 34A34 65L20 65L70 PDF BibTeX XML Cite \textit{P. L. Ndukum} et al., Numer. Algorithms 74, No. 1, 267--287 (2017; Zbl 1355.65089) Full Text: DOI OpenURL
Plato, Robert The regularizing properties of multistep methods for first kind Volterra integral equations with smooth kernels. (English) Zbl 1355.65183 Comput. Methods Appl. Math. 17, No. 1, 139-159 (2017). MSC: 65R20 45D05 65R30 PDF BibTeX XML Cite \textit{R. Plato}, Comput. Methods Appl. Math. 17, No. 1, 139--159 (2017; Zbl 1355.65183) Full Text: DOI arXiv OpenURL
Turki, Mohammed Yousif; Ismail, Fudziah; Senu, Norazak; Ibrahim, Zarina Bibi Second derivative multistep method for solving first-order ordinary differential equations. (English) Zbl 07350649 Chen, Chuei Yee (ed.) et al., Innovations through mathematical and statistical research. Proceedings of the 2nd international conference on mathematical sciences and statistics, ICMSS2016, Kuala Lumpur, Malaysia, January 26–28, 2016. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1739, Article ID 020054, 8 p. (2016). MSC: 65Lxx PDF BibTeX XML Cite \textit{M. Y. Turki} et al., AIP Conf. Proc. 1739, Article ID 020054, 8 p. (2016; Zbl 07350649) Full Text: DOI Link OpenURL
Ramos, Higinio; Singh, Gurjinder; Kanwar, V.; Bhatia, Saurabh An efficient variable step-size rational Falkner-type method for solving the special second-order IVP. (English) Zbl 1410.65257 Appl. Math. Comput. 291, 39-51 (2016). MSC: 65L05 PDF BibTeX XML Cite \textit{H. Ramos} et al., Appl. Math. Comput. 291, 39--51 (2016; Zbl 1410.65257) Full Text: DOI OpenURL
Li, Shoufu Canonical Euler splitting method for nonlinear composite stiff evolution equations. (English) Zbl 1410.65242 Appl. Math. Comput. 289, 220-236 (2016). MSC: 65L04 65L05 PDF BibTeX XML Cite \textit{S. Li}, Appl. Math. Comput. 289, 220--236 (2016; Zbl 1410.65242) Full Text: DOI OpenURL
Pandey, P. K.; Pandey, B. D. Variable mesh size exponential finite difference method for the numerical solutions of two point boundary value problems. (English) Zbl 1424.65112 Bol. Soc. Parana. Mat. (3) 34, No. 2, 9-27 (2016). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey} and \textit{B. D. Pandey}, Bol. Soc. Parana. Mat. (3) 34, No. 2, 9--27 (2016; Zbl 1424.65112) Full Text: Link OpenURL
Pandey, P. K. Solving nonlinear two point boundary value problems using exponential finite difference method. (English) Zbl 1424.65110 Bol. Soc. Parana. Mat. (3) 34, No. 1, 33-44 (2016). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{P. K. Pandey}, Bol. Soc. Parana. Mat. (3) 34, No. 1, 33--44 (2016; Zbl 1424.65110) Full Text: Link OpenURL
Akram, Ghazala; Tariq, Hira An exponential spline technique for solving fractional boundary value problem. (English) Zbl 1377.65093 Calcolo 53, No. 4, 545-558 (2016). Reviewer: Kai Diethelm (Braunschweig) MSC: 65L10 34A08 34B15 65L60 65L70 PDF BibTeX XML Cite \textit{G. Akram} and \textit{H. Tariq}, Calcolo 53, No. 4, 545--558 (2016; Zbl 1377.65093) Full Text: DOI OpenURL
Jha, Navnit; Mohanty, R. K.; Chauhan, Vinod Efficient algorithms for fourth and sixth-order two-point non-linear boundary value problems using non-polynomial spline approximations on a geometric mesh. (English) Zbl 1370.65036 Comput. Appl. Math. 35, No. 2, 389-404 (2016). MSC: 65L10 65L12 34B05 34B15 65L20 65L70 PDF BibTeX XML Cite \textit{N. Jha} et al., Comput. Appl. Math. 35, No. 2, 389--404 (2016; Zbl 1370.65036) Full Text: DOI OpenURL
Froyland, Gary; Gottwald, Georg A.; Hammerlindl, Andy A trajectory-free framework for analysing multiscale systems. (English) Zbl 1366.65065 Physica D 328-329, 34-43 (2016). MSC: 65K10 93C70 PDF BibTeX XML Cite \textit{G. Froyland} et al., Physica D 328--329, 34--43 (2016; Zbl 1366.65065) Full Text: DOI arXiv OpenURL
Julien, Keith; Aurnou, Jonathan M.; Calkins, Michael A.; Knobloch, Edgar; Marti, Philippe; Stellmach, Stephan; Vasil, Geoffrey M. A nonlinear model for rotationally constrained convection with Ekman pumping. (English) Zbl 1422.76165 J. Fluid Mech. 798, 50-87 (2016). MSC: 76R05 76U05 PDF BibTeX XML Cite \textit{K. Julien} et al., J. Fluid Mech. 798, 50--87 (2016; Zbl 1422.76165) Full Text: DOI arXiv OpenURL
Yakubu, D. G.; Markus, S. The efficiency of second derivative multistep methods for the numerical integration of stiff systems. (English) Zbl 1353.65080 J. Niger. Math. Soc. 35, No. 1, 107-127 (2016). MSC: 65L06 65L04 65L05 65L20 34A34 PDF BibTeX XML Cite \textit{D. G. Yakubu} and \textit{S. Markus}, J. Niger. Math. Soc. 35, No. 1, 107--127 (2016; Zbl 1353.65080) Full Text: DOI OpenURL