Huy Tuan, Nguyen Global existence and convergence results for a class of nonlinear time fractional diffusion equation. (English) Zbl 07735418 Nonlinearity 36, No. 10, 5144-5189 (2023). MSC: 35R11 35K15 35K58 PDF BibTeX XML Cite \textit{N. Huy Tuan}, Nonlinearity 36, No. 10, 5144--5189 (2023; Zbl 07735418) Full Text: DOI
Liu, Qiao; Pan, Meiling Remarks on regularity criteria for the 3d Navier-Stokes equations. (English) Zbl 07726368 Indian J. Pure Appl. Math. 54, No. 3, 868-875 (2023). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{M. Pan}, Indian J. Pure Appl. Math. 54, No. 3, 868--875 (2023; Zbl 07726368) Full Text: DOI
Jenaliyev, Muvasharkhan T.; Bektemesov, Maktagali A.; Yergaliyev, Madi G. On an inverse problem for a linearized system of Navier-Stokes equations with a final overdetermination condition. (English) Zbl 07726085 J. Inverse Ill-Posed Probl. 31, No. 4, 611-624 (2023). MSC: 35Q30 35R30 35R25 76D05 35N25 35A01 35A02 PDF BibTeX XML Cite \textit{M. T. Jenaliyev} et al., J. Inverse Ill-Posed Probl. 31, No. 4, 611--624 (2023; Zbl 07726085) Full Text: DOI
Li, Rulv Smooth solution for incompressible Navier-Stokes equations with large initial. (English) Zbl 07725574 Appl. Anal. 102, No. 10, 2866-2881 (2023). MSC: 35Q30 76D05 35A01 35B45 35E15 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{R. Li}, Appl. Anal. 102, No. 10, 2866--2881 (2023; Zbl 07725574) Full Text: DOI
Zhao, Jiefeng; Wu, Jiahong Oldroyd-B model with high Weissenberg number and fractional velocity dissipation. (English) Zbl 07719229 J. Geom. Anal. 33, No. 9, Paper No. 296, 38 p. (2023). MSC: 35Q35 35B35 76A05 76A10 76D03 76D05 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{J. Wu}, J. Geom. Anal. 33, No. 9, Paper No. 296, 38 p. (2023; Zbl 07719229) Full Text: DOI
Song, Zihao; Xu, Jiang Global existence and analyticity of \(L^p\) solutions to the compressible fluid model of Korteweg type. (English) Zbl 07715605 J. Differ. Equations 370, 101-139 (2023). Reviewer: Václav Mácha (Praha) MSC: 76N10 35Q35 PDF BibTeX XML Cite \textit{Z. Song} and \textit{J. Xu}, J. Differ. Equations 370, 101--139 (2023; Zbl 07715605) Full Text: DOI arXiv
Miller, Evan Finite-time blowup for a Navier-Stokes model equation for the self-amplification of strain. (English) Zbl 07713389 Anal. PDE 16, No. 4, 997-1032 (2023). MSC: 35Q30 35B44 35B65 PDF BibTeX XML Cite \textit{E. Miller}, Anal. PDE 16, No. 4, 997--1032 (2023; Zbl 07713389) Full Text: DOI arXiv
Qian, Chenyin; Chen, Hui; Zhang, Ting Global existence of weak solutions for 3D incompressible inhomogeneous asymmetric fluids. (English) Zbl 07710881 Math. Ann. 386, No. 3-4, 1555-1593 (2023). MSC: 35Q30 76D05 35D30 35D35 35A01 PDF BibTeX XML Cite \textit{C. Qian} et al., Math. Ann. 386, No. 3--4, 1555--1593 (2023; Zbl 07710881) Full Text: DOI
Li, Hui; Zhao, Weiren Metastability for the dissipative quasi-geostrophic equation and the non-local enhancement. (English) Zbl 07707354 Commun. Math. Phys. 401, No. 2, 1383-1415 (2023). MSC: 35Qxx 76Dxx 35Bxx PDF BibTeX XML Cite \textit{H. Li} and \textit{W. Zhao}, Commun. Math. Phys. 401, No. 2, 1383--1415 (2023; Zbl 07707354) Full Text: DOI arXiv
Agarwal, Ravi P.; Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra On the regularity criterion on one velocity component for the micropolar fluid equations. (English) Zbl 1514.35342 Math. Model. Anal. 28, No. 2, 271-284 (2023). MSC: 35Q35 35B65 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Math. Model. Anal. 28, No. 2, 271--284 (2023; Zbl 1514.35342) Full Text: DOI
Hao, Tiantian; Liu, Yanlin The influence of viscous coefficients on the lifespan of 3-D anisotropic Navier-Stokes system. (English) Zbl 07702590 SIAM J. Math. Anal. 55, No. 3, 2186-2210 (2023). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{T. Hao} and \textit{Y. Liu}, SIAM J. Math. Anal. 55, No. 3, 2186--2210 (2023; Zbl 07702590) Full Text: DOI arXiv
O, Chol-Jun A remark on the regularity criterion for the 3D Navier-Stokes equations in terms of two vorticity components. (English) Zbl 07698249 Nonlinear Anal., Real World Appl. 71, Article ID 103840, 7 p. (2023). MSC: 35Q30 76D05 76D17 35B65 35B44 35D35 30H25 PDF BibTeX XML Cite \textit{C.-J. O}, Nonlinear Anal., Real World Appl. 71, Article ID 103840, 7 p. (2023; Zbl 07698249) Full Text: DOI
Xu, Jiang; Zhu, Limin Global existence and optimal time decay for the viscous liquid-gas two-phase flow model in the \(L^p\) critical Besov space. (English) Zbl 07694363 Discrete Contin. Dyn. Syst., Ser. B 28, No. 9, 5055-5086 (2023). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 76T10 76N10 35Q35 PDF BibTeX XML Cite \textit{J. Xu} and \textit{L. Zhu}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 9, 5055--5086 (2023; Zbl 07694363) Full Text: DOI
Koizumi, Yuta; Taniguchi, Toya Convergence of approximating solutions of the Navier-Stokes equations in \(\mathbb{R}^n\). (English) Zbl 1515.35184 J. Math. Anal. Appl. 525, No. 2, Article ID 127170, 25 p. (2023). MSC: 35Q30 76D05 35D35 35B65 PDF BibTeX XML Cite \textit{Y. Koizumi} and \textit{T. Taniguchi}, J. Math. Anal. Appl. 525, No. 2, Article ID 127170, 25 p. (2023; Zbl 1515.35184) Full Text: DOI
Gervais, Pierre On the convergence from Boltzmann to Navier-Stokes-Fourier for general initial data. (English) Zbl 1512.35073 SIAM J. Math. Anal. 55, No. 2, 805-848 (2023). MSC: 35B40 35D35 35Q20 35Q30 82B40 PDF BibTeX XML Cite \textit{P. Gervais}, SIAM J. Math. Anal. 55, No. 2, 805--848 (2023; Zbl 1512.35073) Full Text: DOI arXiv
Danchin, Raphaël; Wang, Shan Global unique solutions for the inhomogeneous Navier-Stokes equations with only bounded density, in critical regularity spaces. (English) Zbl 1514.35312 Commun. Math. Phys. 399, No. 3, 1647-1688 (2023). MSC: 35Q30 76D05 76D03 35B65 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{S. Wang}, Commun. Math. Phys. 399, No. 3, 1647--1688 (2023; Zbl 1514.35312) Full Text: DOI arXiv
Kang, Kyungkeun; Lai, Baishun; Lai, Chen-Chih; Tsai, Tai-Peng The Green tensor of the nonstationary Stokes system in the half space. (English) Zbl 1512.35441 Commun. Math. Phys. 399, No. 2, 1291-1372 (2023). MSC: 35Q30 76D07 76D05 76M60 35B06 35A01 35A02 15A69 PDF BibTeX XML Cite \textit{K. Kang} et al., Commun. Math. Phys. 399, No. 2, 1291--1372 (2023; Zbl 1512.35441) Full Text: DOI arXiv
Zhang, Yuhao; Dong, Haiyun; Wang, Kun Mass, momentum and energy identical-relation-preserving scheme for the Navier-Stokes equations with variable density. (English) Zbl 07674326 Comput. Math. Appl. 137, 73-92 (2023). MSC: 76-XX 81-XX PDF BibTeX XML Cite \textit{Y. Zhang} et al., Comput. Math. Appl. 137, 73--92 (2023; Zbl 07674326) Full Text: DOI
Zhang, Jingjing; Zhang, Ting Global well-posedness of perturbed Navier-Stokes system around Landau solutions. (English) Zbl 1511.35262 J. Math. Phys. 64, No. 1, Article ID 011516, 7 p. (2023). MSC: 35Q30 76D05 35B40 76D03 35B35 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{T. Zhang}, J. Math. Phys. 64, No. 1, Article ID 011516, 7 p. (2023; Zbl 1511.35262) Full Text: DOI
Zhao, Xiaopeng On the strong solution of 3D non-isothermal Navier-Stokes-Cahn-Hilliard equations. (English) Zbl 1511.35296 J. Math. Phys. 64, No. 3, Article ID 031506, 13 p. (2023). MSC: 35Q35 35Q30 35D35 35B41 76D03 PDF BibTeX XML Cite \textit{X. Zhao}, J. Math. Phys. 64, No. 3, Article ID 031506, 13 p. (2023; Zbl 1511.35296) Full Text: DOI
Shakhmurov, V. B. Navier-Stokes problems with small parameters in half-space and application. (English. Russian original) Zbl 1508.35045 Sib. Math. J. 64, No. 1, 181-201 (2023); translation from Sib. Mat. Zh. 64, No. 1, 213-234 (2023). MSC: 35Q30 76D05 76D07 76M60 35B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{V. B. Shakhmurov}, Sib. Math. J. 64, No. 1, 181--201 (2023; Zbl 1508.35045); translation from Sib. Mat. Zh. 64, No. 1, 213--234 (2023) Full Text: DOI
Ferriere, Guillaume; Hillairet, Matthieu Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data. (English) Zbl 07649451 C. R., Math., Acad. Sci. Paris 361, 453-485 (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 74F10 76D99 PDF BibTeX XML Cite \textit{G. Ferriere} and \textit{M. Hillairet}, C. R., Math., Acad. Sci. Paris 361, 453--485 (2023; Zbl 07649451) Full Text: DOI arXiv
Okita, Masatoshi On the blow-up criterion for the Navier-Stokes equations with critical time order. (English) Zbl 1506.35143 J. Differ. Equations 349, 269-283 (2023). MSC: 35Q30 76D05 35B44 35B65 PDF BibTeX XML Cite \textit{M. Okita}, J. Differ. Equations 349, 269--283 (2023; Zbl 1506.35143) Full Text: DOI
Chen, Qionglei; Li, Zhen Regularity criterion for the 3D Navier-Stokes equations in the boardline case. (English) Zbl 1512.76024 J. Math. Fluid Mech. 25, No. 1, Paper No. 12, 13 p. (2023). Reviewer: Luigi Amedeo Bianchi (Povo) MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{Z. Li}, J. Math. Fluid Mech. 25, No. 1, Paper No. 12, 13 p. (2023; Zbl 1512.76024) Full Text: DOI
Suguro, Takeshi Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces. (English) Zbl 1505.35339 J. Math. Anal. Appl. 520, No. 1, Article ID 126843, 17 p. (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35D99 PDF BibTeX XML Cite \textit{T. Suguro}, J. Math. Anal. Appl. 520, No. 1, Article ID 126843, 17 p. (2023; Zbl 1505.35339) Full Text: DOI
Takeuchi, Taiki Various regularity estimates for the Keller-Segel-Navier-Stokes system in Besov spaces. (English) Zbl 1503.35244 J. Differ. Equations 343, 606-658 (2023). MSC: 35Q92 35Q30 92C17 76D05 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{T. Takeuchi}, J. Differ. Equations 343, 606--658 (2023; Zbl 1503.35244) Full Text: DOI
Tan, Wen Existence and regularity of solutions for a 3D coupled parabolic-elliptic equations related to magnetic relaxation. (English) Zbl 1501.35327 J. Math. Anal. Appl. 519, No. 1, Article ID 126735, 31 p. (2023). MSC: 35Q35 76W05 76D05 35B45 35B65 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{W. Tan}, J. Math. Anal. Appl. 519, No. 1, Article ID 126735, 31 p. (2023; Zbl 1501.35327) Full Text: DOI
Zhang, Qinghua Decay rates for the higher-order derivatives of the Navier-Stokes flow in exterior domains. (English) Zbl 1498.35400 J. Math. Anal. Appl. 517, No. 2, Article ID 126612, 24 p. (2023). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{Q. Zhang}, J. Math. Anal. Appl. 517, No. 2, Article ID 126612, 24 p. (2023; Zbl 1498.35400) Full Text: DOI
Nguyen, Thieu Huy; Van Nguyen, Thi; Pham, Truong Xuan; Vu, Thi Ngoc Ha Periodic and almost periodic evolution flows and their stability on non-compact Einstein manifolds and applications. (English) Zbl 1503.35140 Ann. Pol. Math. 129, No. 2, 147-174 (2022). MSC: 35Q30 35B10 58J35 35B35 76D05 35R01 PDF BibTeX XML Cite \textit{T. H. Nguyen} et al., Ann. Pol. Math. 129, No. 2, 147--174 (2022; Zbl 1503.35140) Full Text: DOI
Danchin, Raphaël; Tan, Jin The global solvability of the Hall-magnetohydrodynamics system in critical Sobolev spaces. (English) Zbl 1502.35107 Commun. Contemp. Math. 24, No. 10, Article ID 2150099, 33 p. (2022). MSC: 35Q35 35Q86 76D03 76W05 76D05 86A10 35A01 35A02 35B65 35B40 35D35 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{J. Tan}, Commun. Contemp. Math. 24, No. 10, Article ID 2150099, 33 p. (2022; Zbl 1502.35107) Full Text: DOI arXiv
Coulaud, Olivier; Hachicha, Imène; Raugel, Geneviève Hyperbolic quasilinear Navier-Stokes equations in \({\mathbb{R}}^2\). (English) Zbl 1504.35222 J. Dyn. Differ. Equations 34, No. 4, 2749-2785 (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35Q35 76D05 35L15 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{O. Coulaud} et al., J. Dyn. Differ. Equations 34, No. 4, 2749--2785 (2022; Zbl 1504.35222) Full Text: DOI
Azanzal, Achraf; Allalou, Chakir; Melliani, Said Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent. (English) Zbl 1500.35221 J. Elliptic Parabol. Equ. 8, No. 2, 723-742 (2022). MSC: 35Q30 35S30 42B25 42B37 46F30 49N60 76W05 76D05 35A01 35A02 26A33 35R11 35Q35 PDF BibTeX XML Cite \textit{A. Azanzal} et al., J. Elliptic Parabol. Equ. 8, No. 2, 723--742 (2022; Zbl 1500.35221) Full Text: DOI
Molina Del Sol, Michel; Alarcon, Eduardo Arbieto; Iorio, Rafael José jun. On the Cauchy problem associated with the Brinkman flow in \(\mathbb{R}_+^3\). (English) Zbl 1504.35365 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 5, 1089-1108 (2022). MSC: 35Q35 76S05 35A01 35A02 35B51 35B65 35R09 PDF BibTeX XML Cite \textit{M. Molina Del Sol} et al., Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 5, 1089--1108 (2022; Zbl 1504.35365) Full Text: DOI
Li, Buyang; Ma, Shu; Schratz, Katharina A semi-implicit exponential low-regularity integrator for the Navier-Stokes equations. (English) Zbl 1503.65237 SIAM J. Numer. Anal. 60, No. 4, 2273-2292 (2022). Reviewer: Lijun Yi (Shanghai) MSC: 65M60 65M06 65N30 65N35 65M12 65M15 76D05 PDF BibTeX XML Cite \textit{B. Li} et al., SIAM J. Numer. Anal. 60, No. 4, 2273--2292 (2022; Zbl 1503.65237) Full Text: DOI arXiv
Bezerra, Mario; Cuevas, Claudio; Silva, Clessius; Soto, Herme On the fractional doubly parabolic Keller-Segel system modelling chemotaxis. (English) Zbl 1496.35418 Sci. China, Math. 65, No. 9, 1827-1874 (2022). MSC: 35R11 35B40 35K45 35K59 92C15 92C17 PDF BibTeX XML Cite \textit{M. Bezerra} et al., Sci. China, Math. 65, No. 9, 1827--1874 (2022; Zbl 1496.35418) Full Text: DOI
Liu, Xuanjiang; Xu, Fuyi; Fu, Peng Global well-posedness and analyticity for the three-dimensional incompressible nematic liquid crystal flows in scaling invariant spaces. (English) Zbl 1504.35353 Adv. Math. Phys. 2022, Article ID 3317007, 9 p. (2022). MSC: 35Q35 76A15 35A01 35A02 35A20 PDF BibTeX XML Cite \textit{X. Liu} et al., Adv. Math. Phys. 2022, Article ID 3317007, 9 p. (2022; Zbl 1504.35353) Full Text: DOI
Cheskidov, Alexey; Luo, Xiaoyutao Sharp nonuniqueness for the Navier-Stokes equations. (English) Zbl 1504.35221 Invent. Math. 229, No. 3, 987-1054 (2022). MSC: 35Q30 76D05 35D30 35A02 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{X. Luo}, Invent. Math. 229, No. 3, 987--1054 (2022; Zbl 1504.35221) Full Text: DOI arXiv
Okabe, Takahiro; Tsutsui, Yohei Remark on the strong solvability of the Navier-Stokes equations in the weak \(L^n\) space. (English) Zbl 1496.35283 Math. Ann. 383, No. 3-4, 1353-1390 (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35B65 76D05 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{T. Okabe} and \textit{Y. Tsutsui}, Math. Ann. 383, No. 3--4, 1353--1390 (2022; Zbl 1496.35283) Full Text: DOI arXiv
Farwig, Reinhard; Tsuda, Kazuyuki The Fujita-Kato approach for the Navier-Stokes equations with moving boundary and its application. (English) Zbl 1493.35065 J. Math. Fluid Mech. 24, No. 3, Paper No. 77, 26 p. (2022). MSC: 35Q30 35B10 76D05 PDF BibTeX XML Cite \textit{R. Farwig} and \textit{K. Tsuda}, J. Math. Fluid Mech. 24, No. 3, Paper No. 77, 26 p. (2022; Zbl 1493.35065) Full Text: DOI
Bellomo, N.; Outada, N.; Soler, J.; Tao, Y.; Winkler, M. Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision. (English) Zbl 1497.35039 Math. Models Methods Appl. Sci. 32, No. 4, 713-792 (2022). Reviewer: Lingeshwaran Shangerganesh (Ponda) MSC: 35B36 35B40 35B44 35K51 35K57 35Q35 92C17 91D10 PDF BibTeX XML Cite \textit{N. Bellomo} et al., Math. Models Methods Appl. Sci. 32, No. 4, 713--792 (2022; Zbl 1497.35039) Full Text: DOI
Tan, Zhong; Zhou, Jianfeng The MHD equations in the Lorentz space with time dependent external forces. (English) Zbl 1491.35349 J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022). MSC: 35Q35 76W05 76D07 35B65 35B10 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{J. Zhou}, J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022; Zbl 1491.35349) Full Text: DOI
Carrapatoso, Kleber; Rachid, Mohamad; Tristani, Isabelle Regularization estimates and hydrodynamical limit for the Landau equation. (English. French summary) Zbl 1491.35310 J. Math. Pures Appl. (9) 163, 334-432 (2022). MSC: 35Q20 35Q35 35Q30 35B65 45K05 76P05 76D05 47H20 82C40 35H10 PDF BibTeX XML Cite \textit{K. Carrapatoso} et al., J. Math. Pures Appl. (9) 163, 334--432 (2022; Zbl 1491.35310) Full Text: DOI arXiv
Shi, Weixuan; Song, Zihao; Zhang, Jianzhong Large-time behavior of solutions in the critical spaces for the non-isentropic compressible Navier-Stokes equations with capillarity. (English) Zbl 1490.76180 J. Math. Fluid Mech. 24, No. 3, Paper No. 59, 33 p. (2022). MSC: 76N10 35B40 35D35 PDF BibTeX XML Cite \textit{W. Shi} et al., J. Math. Fluid Mech. 24, No. 3, Paper No. 59, 33 p. (2022; Zbl 1490.76180) Full Text: DOI
Yu, Yanghai; Li, Jinlu; Yin, Zhaoyang Global solutions to 3D incompressible Navier-Stokes equations with some large initial data. (English) Zbl 1491.35325 Appl. Math. Lett. 129, Article ID 107954, 8 p. (2022). MSC: 35Q30 76D05 42B25 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Yu} et al., Appl. Math. Lett. 129, Article ID 107954, 8 p. (2022; Zbl 1491.35325) Full Text: DOI
Buckmaster, Tristan; Colombo, Maria; Vicol, Vlad Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. (English) Zbl 1493.35063 J. Eur. Math. Soc. (JEMS) 24, No. 9, 3333-3378 (2022). MSC: 35Q30 76D05 76D03 35A02 35B65 35D30 28A80 PDF BibTeX XML Cite \textit{T. Buckmaster} et al., J. Eur. Math. Soc. (JEMS) 24, No. 9, 3333--3378 (2022; Zbl 1493.35063) Full Text: DOI arXiv
Kawashima, Shuichi; Nakasato, Ryosuke; Ogawa, Takayoshi Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic system in the critical Besov framework. (English) Zbl 1489.35204 J. Differ. Equations 328, 1-64 (2022). MSC: 35Q35 76W05 76N10 35A01 35A02 81V70 PDF BibTeX XML Cite \textit{S. Kawashima} et al., J. Differ. Equations 328, 1--64 (2022; Zbl 1489.35204) Full Text: DOI
Huang, Lan; Sun, Zhiying; Yang, Xin-Guang; Miranville, Alain Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. (English) Zbl 1506.35161 Commun. Pure Appl. Anal. 21, No. 5, 1595-1620 (2022). MSC: 35Q35 76A05 76N10 35B65 35B06 35B40 35B35 PDF BibTeX XML Cite \textit{L. Huang} et al., Commun. Pure Appl. Anal. 21, No. 5, 1595--1620 (2022; Zbl 1506.35161) Full Text: DOI
Xu, Yuan; Zhou, Fujun; Gong, Weihua Global well-posedness and optimal decay rate of the quasi-static incompressible Navier-Stokes-Fourier-Maxwell-Poisson system. (English) Zbl 1490.76076 Commun. Pure Appl. Anal. 21, No. 5, 1537-1565 (2022). MSC: 76D05 76W05 PDF BibTeX XML Cite \textit{Y. Xu} et al., Commun. Pure Appl. Anal. 21, No. 5, 1537--1565 (2022; Zbl 1490.76076) Full Text: DOI
Iwabuchi, Tsukasa; Ogawa, Takayoshi Ill-posedness for the compressible Navier-Stokes equations under barotropic condition in limiting Besov spaces. (English) Zbl 1487.35294 J. Math. Soc. Japan 74, No. 2, 353-394 (2022). MSC: 35Q30 76N10 47J06 35R25 PDF BibTeX XML Cite \textit{T. Iwabuchi} and \textit{T. Ogawa}, J. Math. Soc. Japan 74, No. 2, 353--394 (2022; Zbl 1487.35294) Full Text: DOI
Chang, Der-Chen; Fu, Xing; Yang, Dachun Boundedness of paraproducts on spaces of homogeneous. I. (English) Zbl 1487.42028 Appl. Anal. 101, No. 6, 2144-2169 (2022). MSC: 42B20 42B25 42C40 30L99 PDF BibTeX XML Cite \textit{D.-C. Chang} et al., Appl. Anal. 101, No. 6, 2144--2169 (2022; Zbl 1487.42028) Full Text: DOI
Liu, Yongfang; Zhu, Chaosheng Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space. (English) Zbl 1506.35141 Open Math. 20, 223-233 (2022). MSC: 35Q30 35Q35 35Q79 76W05 76D05 76E25 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{C. Zhu}, Open Math. 20, 223--233 (2022; Zbl 1506.35141) Full Text: DOI
Zhang, Qing Hua; Zhu, Yue Ping Rapid time-decay phenomenon of the incompressible Navier-Stokes flow in exterior domains. (English) Zbl 1487.35308 Acta Math. Sin., Engl. Ser. 38, No. 4, 745-760 (2022). MSC: 35Q30 76D05 76M60 35D35 PDF BibTeX XML Cite \textit{Q. H. Zhang} and \textit{Y. P. Zhu}, Acta Math. Sin., Engl. Ser. 38, No. 4, 745--760 (2022; Zbl 1487.35308) Full Text: DOI
Chen, Qiong Lei; Hao, Xiao Nan; Li, Jing Yue Global Fujita-Kato’s type solutions and long-time behavior for the multidimensional chemotaxis model. (English) Zbl 1492.35358 Acta Math. Sin., Engl. Ser. 38, No. 2, 311-330 (2022). MSC: 35Q92 92C17 92D25 35G55 35M31 35A01 35A02 35B05 35B20 35D35 PDF BibTeX XML Cite \textit{Q. L. Chen} et al., Acta Math. Sin., Engl. Ser. 38, No. 2, 311--330 (2022; Zbl 1492.35358) Full Text: DOI
Nakasato, Ryosuke Global well-posedness for the incompressible Hall-magnetohydrodynamic system in critical Fourier-Besov spaces. (English) Zbl 1490.35344 J. Evol. Equ. 22, No. 1, Paper No. 20, 35 p. (2022). MSC: 35Q35 76W05 81V70 35A01 35A02 PDF BibTeX XML Cite \textit{R. Nakasato}, J. Evol. Equ. 22, No. 1, Paper No. 20, 35 p. (2022; Zbl 1490.35344) Full Text: DOI
Zheng, Jiashan Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux. (English) Zbl 1485.35067 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 52, 34 p. (2022). MSC: 35B40 35B65 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{J. Zheng}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 52, 34 p. (2022; Zbl 1485.35067) Full Text: DOI arXiv
Wu, Jiahong; Zhao, Jiefeng Global regularity for the generalized incompressible Oldroyd-B model with only stress tensor dissipation in critical Besov spaces. (English) Zbl 1493.35073 J. Differ. Equations 316, 641-686 (2022). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q30 76D05 76A10 35A01 35A02 PDF BibTeX XML Cite \textit{J. Wu} and \textit{J. Zhao}, J. Differ. Equations 316, 641--686 (2022; Zbl 1493.35073) Full Text: DOI
Hosono, Tatsuya; Ogawa, Takayoshi Local well-posedness and finite time blow-up of solutions to an attraction-repulsion chemotaxis system in higher dimensions. (English) Zbl 1483.35046 J. Math. Anal. Appl. 510, No. 1, Article ID 126009, 32 p. (2022). MSC: 35B44 35K45 35K59 92C17 PDF BibTeX XML Cite \textit{T. Hosono} and \textit{T. Ogawa}, J. Math. Anal. Appl. 510, No. 1, Article ID 126009, 32 p. (2022; Zbl 1483.35046) Full Text: DOI
Chen, Qionglei; Hao, Xiaonan Local and some type of large solutions for the chemotaxis-fluid equations with partial dissipation. (English) Zbl 1483.35004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112746, 19 p. (2022). MSC: 35A01 35A02 35K51 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{X. Hao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112746, 19 p. (2022; Zbl 1483.35004) Full Text: DOI
Liu, Feng; Xi, Shuai; Zeng, Zirong; Zhu, Shengguo Global mild solutions to three-dimensional magnetohydrodynamic equations in Morrey spaces. (English) Zbl 1508.35081 J. Differ. Equations 314, 752-807 (2022). MSC: 35Q35 76W05 35A01 35A02 35B40 35L60 PDF BibTeX XML Cite \textit{F. Liu} et al., J. Differ. Equations 314, 752--807 (2022; Zbl 1508.35081) Full Text: DOI arXiv
Nguyen, Huy Q. Global solutions for the Muskat problem in the scaling invariant Besov space \(\dot{B}_{\infty , 1}^1\). (English) Zbl 1480.35412 Adv. Math. 394, Article ID 108122, 28 p. (2022). MSC: 35R35 35K59 35Q35 35A01 35A02 PDF BibTeX XML Cite \textit{H. Q. Nguyen}, Adv. Math. 394, Article ID 108122, 28 p. (2022; Zbl 1480.35412) Full Text: DOI arXiv
Gong, Weihua; Zhou, Fujun; Wu, Weijun; Hu, Qian Optimal decay rate of the two-fluid incompressible Navier-Stokes-Fourier-Poisson system with Ohm’s law. (English) Zbl 1502.35080 Nonlinear Anal., Real World Appl. 63, Article ID 103392, 22 p. (2022). MSC: 35Q30 35Q35 35Q60 76D05 76T06 76N06 78A35 PDF BibTeX XML Cite \textit{W. Gong} et al., Nonlinear Anal., Real World Appl. 63, Article ID 103392, 22 p. (2022; Zbl 1502.35080) Full Text: DOI
Liu, Yanlin; Zhang, Ping Remark on 3-D Navier-Stokes system with strong dissipation in one direction. (English) Zbl 1500.35225 Commun. Pure Appl. Anal. 20, No. 7-8, 2765-2787 (2021). MSC: 35Q30 76D03 35A01 35A02 35D35 42B25 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{P. Zhang}, Commun. Pure Appl. Anal. 20, No. 7--8, 2765--2787 (2021; Zbl 1500.35225) Full Text: DOI
Abidin, Muhammad Zainul; Chen, Jiecheng Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces. (English) Zbl 1513.35419 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 1, 164-176 (2021). MSC: 35Q30 35K55 35R11 PDF BibTeX XML Cite \textit{M. Z. Abidin} and \textit{J. Chen}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 1, 164--176 (2021; Zbl 1513.35419) Full Text: DOI
Jlali, Lotfi Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces. (English) Zbl 1482.35156 Open Math. 19, 898-908 (2021). MSC: 35Q30 35D35 PDF BibTeX XML Cite \textit{L. Jlali}, Open Math. 19, 898--908 (2021; Zbl 1482.35156) Full Text: DOI
Miller, Evan Navier-Stokes regularity criteria in sum spaces. (English) Zbl 1487.35301 Pure Appl. Anal. 3, No. 3, 527-566 (2021). MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{E. Miller}, Pure Appl. Anal. 3, No. 3, 527--566 (2021; Zbl 1487.35301) Full Text: DOI arXiv
Song, Zihao The Gevrey analyticity and decay for the micropolar system in the critical Besov space. (English) Zbl 1482.35013 J. Evol. Equ. 21, No. 4, 4751-4771 (2021). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35A20 35K45 35Q35 39A14 42B25 46N20 76A05 PDF BibTeX XML Cite \textit{Z. Song}, J. Evol. Equ. 21, No. 4, 4751--4771 (2021; Zbl 1482.35013) Full Text: DOI
Takeuchi, Taiki Maximal Lorentz regularity for the Keller-Segel system of parabolic-elliptic type. (English) Zbl 1482.35231 J. Evol. Equ. 21, No. 4, 4619-4640 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B65 35K55 PDF BibTeX XML Cite \textit{T. Takeuchi}, J. Evol. Equ. 21, No. 4, 4619--4640 (2021; Zbl 1482.35231) Full Text: DOI
Furukawa, Ken; Giga, Yoshikazu; Kashiwabara, Takahito The hydrostatic approximation for the primitive equations by the scaled Navier-Stokes equations under the no-slip boundary condition. (English) Zbl 1503.35131 J. Evol. Equ. 21, No. 3, 3331-3373 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35Q86 76D05 76U60 86A05 35A01 35A02 PDF BibTeX XML Cite \textit{K. Furukawa} et al., J. Evol. Equ. 21, No. 3, 3331--3373 (2021; Zbl 1503.35131) Full Text: DOI arXiv
Kozono, Hideo; Okada, Akira; Shimizu, Senjo Necessary and sufficient condition on initial data in the Besov space for solutions in the Serrin class of the Navier-Stokes equations. (English) Zbl 1514.35320 J. Evol. Equ. 21, No. 3, 3015-3033 (2021). MSC: 35Q30 76D05 35A02 PDF BibTeX XML Cite \textit{H. Kozono} et al., J. Evol. Equ. 21, No. 3, 3015--3033 (2021; Zbl 1514.35320) Full Text: DOI
Miller, Evan A survey of geometric constraints on the blowup of solutions of the Navier-Stokes equation. (English) Zbl 1479.35628 J. Elliptic Parabol. Equ. 7, No. 2, 589-599 (2021). MSC: 35Q30 76D05 35B44 35B65 PDF BibTeX XML Cite \textit{E. Miller}, J. Elliptic Parabol. Equ. 7, No. 2, 589--599 (2021; Zbl 1479.35628) Full Text: DOI arXiv
Ogawa, Takayoshi; Shimizu, Senjo Maximal \(L^1\)-regularity of the heat equation and application to a free boundary problem of the Navier-Stokes equations near the half-space. (English) Zbl 1479.35172 J. Elliptic Parabol. Equ. 7, No. 2, 509-535 (2021). MSC: 35B65 35K20 35Q30 35R35 42B25 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Shimizu}, J. Elliptic Parabol. Equ. 7, No. 2, 509--535 (2021; Zbl 1479.35172) Full Text: DOI
Monniaux, Sylvie Existence in critical spaces for the magnetohydrodynamical system in 3D bounded Lipschitz domains. (English) Zbl 1502.35122 J. Elliptic Parabol. Equ. 7, No. 2, 311-322 (2021). MSC: 35Q35 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{S. Monniaux}, J. Elliptic Parabol. Equ. 7, No. 2, 311--322 (2021; Zbl 1502.35122) Full Text: DOI arXiv
Guo, Boling; Qin, Guoquan Navier-Stokes equations with external forces in Besov-Morrey spaces. (English) Zbl 1479.35612 Appl. Anal. 100, No. 12, 2499-2525 (2021). MSC: 35Q30 76D05 76D03 35B65 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{B. Guo} and \textit{G. Qin}, Appl. Anal. 100, No. 12, 2499--2525 (2021; Zbl 1479.35612) Full Text: DOI arXiv
Kania, Maria B. MHD equations in a bounded domain. (English) Zbl 1479.35672 Ann. Math. Sil. 35, No. 2, 211-235 (2021). MSC: 35Q35 35S15 35K90 35B65 76W05 76M60 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{M. B. Kania}, Ann. Math. Sil. 35, No. 2, 211--235 (2021; Zbl 1479.35672) Full Text: DOI
Amrouche, Chérif; Escobedo, Miguel; Ghosh, Amrita Semigroup theory for the Stokes operator with Navier boundary condition on \(L^p\) spaces. (English) Zbl 1485.35315 Bodnár, Tomáš (ed.) et al., Waves in flows. The 2018 Prague-sum workshop lectures, Prague, Czech Republic, August 27–31, 2018. Cham: Birkhäuser. Adv. Math. Fluid Mech., 1-51 (2021). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 35Q30 76D05 76D07 76D03 35D30 35D35 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{C. Amrouche} et al., in: Waves in flows. The 2018 Prague-sum workshop lectures, Prague, Czech Republic, August 27--31, 2018. Cham: Birkhäuser. 1--51 (2021; Zbl 1485.35315) Full Text: DOI arXiv
Al Baba, Hind; Jazar, Mustapha \(L^2\)-decay of solutions to the Navier-Stokes system with Navier-type boundary conditions. (English) Zbl 1486.35323 J. Math. Fluid Mech. 23, No. 3, Paper No. 83, 17 p. (2021). MSC: 35Q30 35B65 35D30 35D35 76D05 76D07 26A33 35R11 PDF BibTeX XML Cite \textit{H. Al Baba} and \textit{M. Jazar}, J. Math. Fluid Mech. 23, No. 3, Paper No. 83, 17 p. (2021; Zbl 1486.35323) Full Text: DOI
Min, Dezai; Wu, Gang; Yao, Zhuoya Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces. (English) Zbl 1480.35334 J. Math. Anal. Appl. 504, No. 1, Article ID 125345, 16 p. (2021). MSC: 35Q35 76W05 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{D. Min} et al., J. Math. Anal. Appl. 504, No. 1, Article ID 125345, 16 p. (2021; Zbl 1480.35334) Full Text: DOI
Zhang, Shunhang Global large solutions to the 3-D generalized incompressible Navier-Stokes equations. (English) Zbl 1476.35183 Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2101-2121 (2021). MSC: 35Q30 76D03 76D05 42B25 35A01 35A02 PDF BibTeX XML Cite \textit{S. Zhang}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2101--2121 (2021; Zbl 1476.35183) Full Text: DOI
Song, Zihao The global well-posedness for the 3-D compressible micropolar system in the critical Besov space. (English) Zbl 1476.35209 Z. Angew. Math. Phys. 72, No. 4, Paper No. 160, 23 p. (2021). MSC: 35Q35 35Q30 35A01 35A02 35B65 42B25 76A05 76N10 PDF BibTeX XML Cite \textit{Z. Song}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 160, 23 p. (2021; Zbl 1476.35209) Full Text: DOI
Ohyama, Hiroki; Takada, Ryo Asymptotic limit of fast rotation for the incompressible Navier-Stokes equations in a 3D layer. (English) Zbl 1486.35330 J. Evol. Equ. 21, No. 2, 2591-2629 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D03 76D05 76U05 76M45 35A01 PDF BibTeX XML Cite \textit{H. Ohyama} and \textit{R. Takada}, J. Evol. Equ. 21, No. 2, 2591--2629 (2021; Zbl 1486.35330) Full Text: DOI
Takeuchi, Taiki The Keller-Segel system of parabolic-parabolic type in homogeneous Besov spaces framework. (English) Zbl 1470.35102 J. Differ. Equations 298, 609-640 (2021). MSC: 35B65 35B45 35K59 35K45 92C17 PDF BibTeX XML Cite \textit{T. Takeuchi}, J. Differ. Equations 298, 609--640 (2021; Zbl 1470.35102) Full Text: DOI
Duan, Ning; Liu, Fengnan; Zhao, Xiaopeng Global well-posedness of solutions for the epitaxy thin film growth model. (English) Zbl 1470.35172 Nonlinear Anal., Model. Control 26, No. 4, 565-580 (2021). MSC: 35K35 35K58 76A20 PDF BibTeX XML Cite \textit{N. Duan} et al., Nonlinear Anal., Model. Control 26, No. 4, 565--580 (2021; Zbl 1470.35172) Full Text: DOI
Bedrossian, Jacob; Golding, William Uniqueness criteria for the Oseen vortex in the 3d Navier-Stokes equations. (English) Zbl 1513.35420 Commun. Partial Differ. Equations 46, No. 6, 1092-1136 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35D30 PDF BibTeX XML Cite \textit{J. Bedrossian} and \textit{W. Golding}, Commun. Partial Differ. Equations 46, No. 6, 1092--1136 (2021; Zbl 1513.35420) Full Text: DOI arXiv
Farwig, Reinhard; Kanamaru, Ryo Optimality of Serrin type extension criteria to the Navier-Stokes equations. (English) Zbl 1473.35400 Adv. Nonlinear Anal. 10, 1071-1085 (2021). MSC: 35Q30 35B65 46E35 76D05 35D35 PDF BibTeX XML Cite \textit{R. Farwig} and \textit{R. Kanamaru}, Adv. Nonlinear Anal. 10, 1071--1085 (2021; Zbl 1473.35400) Full Text: DOI
Yang, Jiaqi Global well-posedness of mild solution to the 3D Boussinesq system with damping. (English) Zbl 1473.35461 J. Math. Anal. Appl. 503, No. 1, Article ID 125305, 12 p. (2021). MSC: 35Q35 76A10 35A01 35A02 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Anal. Appl. 503, No. 1, Article ID 125305, 12 p. (2021; Zbl 1473.35461) Full Text: DOI
Miller, Evan Global regularity for solutions of the Navier-Stokes equation sufficiently close to being eigenfunctions of the Laplacian. (English) Zbl 1472.35271 Proc. Am. Math. Soc., Ser. B 8, 129-144 (2021). MSC: 35Q30 76D05 35B65 35B44 76F02 PDF BibTeX XML Cite \textit{E. Miller}, Proc. Am. Math. Soc., Ser. B 8, 129--144 (2021; Zbl 1472.35271) Full Text: DOI arXiv
Sun, Jinyi; Fu, Zunwei; Yin, Yue; Yang, Minghua Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. (English) Zbl 1471.35221 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3409-3425 (2021). MSC: 35Q30 35Q35 76D03 76D05 76W05 42B37 35E15 35B65 35B40 35A01 PDF BibTeX XML Cite \textit{J. Sun} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3409--3425 (2021; Zbl 1471.35221) Full Text: DOI
de Andrade, Bruno; Silva, Clessius; Viana, Arlúcio \(L^q\)-solvability for an equation of viscoelasticity in power type material. (English) Zbl 1472.45002 Z. Angew. Math. Phys. 72, No. 1, Paper No. 10, 20 p. (2021). Reviewer: Gustaf Gripenberg (Aalto) MSC: 45D05 35Q35 35Q30 76A10 76A05 76D03 PDF BibTeX XML Cite \textit{B. de Andrade} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 10, 20 p. (2021; Zbl 1472.45002) Full Text: DOI
O, Chol-Jun Regularity criterion for weak solutions to the 3D Navier-Stokes equations via two vorticity components in \(B M O^{- 1}\). (English) Zbl 1468.35113 Nonlinear Anal., Real World Appl. 59, Article ID 103271, 12 p. (2021). MSC: 35Q30 35B65 35D30 PDF BibTeX XML Cite \textit{C.-J. O}, Nonlinear Anal., Real World Appl. 59, Article ID 103271, 12 p. (2021; Zbl 1468.35113) Full Text: DOI
Ahn, Jaewook; Kim, Junha; Lee, Jihoon Global solutions to 3D incompressible rotational MHD system. (English) Zbl 1467.35320 J. Evol. Equ. 21, No. 1, 235-246 (2021). MSC: 35Q86 76D03 76W05 76U05 86A05 35A01 35A02 PDF BibTeX XML Cite \textit{J. Ahn} et al., J. Evol. Equ. 21, No. 1, 235--246 (2021; Zbl 1467.35320) Full Text: DOI
Kim, Philsu; Bak, Soyoon Algorithm for a cost-reducing time-integration scheme for solving incompressible Navier-Stokes equations. (English) Zbl 1506.76117 Comput. Methods Appl. Mech. Eng. 373, Article ID 113546, 20 p. (2021). MSC: 76M15 65M06 76D05 PDF BibTeX XML Cite \textit{P. Kim} and \textit{S. Bak}, Comput. Methods Appl. Mech. Eng. 373, Article ID 113546, 20 p. (2021; Zbl 1506.76117) Full Text: DOI
Takahashi, Tomoki Existence of a stationary Navier-Stokes flow past a rigid body, with application to starting problem in higher dimensions. (English) Zbl 1460.35265 J. Math. Fluid Mech. 23, No. 2, Paper No. 32, 23 p. (2021). MSC: 35Q30 76D05 76D07 35A01 PDF BibTeX XML Cite \textit{T. Takahashi}, J. Math. Fluid Mech. 23, No. 2, Paper No. 32, 23 p. (2021; Zbl 1460.35265) Full Text: DOI arXiv
He, Cheng; Li, Jing; Lü, Boqiang Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains. (English) Zbl 1462.35243 Arch. Ration. Mech. Anal. 239, No. 3, 1809-1835 (2021). MSC: 35Q30 76D05 35B35 35B40 35D35 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{C. He} et al., Arch. Ration. Mech. Anal. 239, No. 3, 1809--1835 (2021; Zbl 1462.35243) Full Text: DOI arXiv
Miller, Evan A locally anisotropic regularity criterion for the Navier-Stokes equation in terms of vorticity. (English) Zbl 1462.35248 Proc. Am. Math. Soc., Ser. B 8, 60-74 (2021). MSC: 35Q30 76D05 35B65 35B44 PDF BibTeX XML Cite \textit{E. Miller}, Proc. Am. Math. Soc., Ser. B 8, 60--74 (2021; Zbl 1462.35248) Full Text: DOI arXiv
Brandolese, Lorenzo; Okabe, Takahiro Annihilation of slowly-decaying terms of Navier-Stokes flows by external forcing. (English) Zbl 1462.35238 Nonlinearity 34, No. 3, 1733-1757 (2021). MSC: 35Q30 76D05 35B40 PDF BibTeX XML Cite \textit{L. Brandolese} and \textit{T. Okabe}, Nonlinearity 34, No. 3, 1733--1757 (2021; Zbl 1462.35238) Full Text: DOI arXiv
Li, Buyang A bounded numerical solution with a small mesh size implies existence of a smooth solution to the Navier-Stokes equations. (English) Zbl 1459.35313 Numer. Math. 147, No. 2, 283-304 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 65M15 65M60 35B65 35A02 PDF BibTeX XML Cite \textit{B. Li}, Numer. Math. 147, No. 2, 283--304 (2021; Zbl 1459.35313) Full Text: DOI arXiv
Vakulenko, Sergei Strange attractors for Oberbeck-Boussinesq model. (English) Zbl 1458.35068 J. Dyn. Differ. Equations 33, No. 1, 303-343 (2021). MSC: 35B41 35Q30 35Q35 PDF BibTeX XML Cite \textit{S. Vakulenko}, J. Dyn. Differ. Equations 33, No. 1, 303--343 (2021; Zbl 1458.35068) Full Text: DOI arXiv
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 1461.35186 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 1461.35186) Full Text: DOI
Ohyama, Hiroki Global well-posedness for the Navier-Stokes equations with the Coriolis force in function spaces characterized by semigroups. (English) Zbl 1455.76031 J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{H. Ohyama}, J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021; Zbl 1455.76031) Full Text: DOI
Ogawa, Takayoshi; Shimizu, Senjo Global well-posedness for the incompressible Navier-Stokes equations in the critical Besov space under the Lagrangian coordinates. (English) Zbl 1454.35260 J. Differ. Equations 274, 613-651 (2021). MSC: 35Q30 76D05 42B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Shimizu}, J. Differ. Equations 274, 613--651 (2021; Zbl 1454.35260) Full Text: DOI