×

Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime. (English) Zbl 1239.35063

Summary: We study the long-time asymptotics of the doubly nonlinear diffusion equation \(r_{t}=\mathrm{div}(|\nabla \rho^m|^{p-2}\nabla (\rho^m))\) in \(\mathbb{R}^{n}\), in the range \(\frac{n-\rho}{n(\rho-1)} < m < \frac{n-\rho+1}{n(\rho-1)}\) and \(1 < p < \infty \) where the mass of the solution is conserved, but the associated energy functional is not displacement convex. Using a linearisation of the equation, we prove an \(L^{1}\)-algebraic decay of the non-negative solution to a Barenblatt-type solution, and we estimate its rate of convergence. We then derive the nonlinear stability of the solution by means of some comparison method between the nonlinear equation and its linearisation. Our results cover the exponent interval \(\frac{2n}{n+1}<p< \frac{2n+1}{n+1}\) where a rate of convergence towards self-similarity was still unknown for the \(p\)-Laplacian equation.

MSC:

35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Agueh M. (2003) Asymptotic behavior for doubly degenerate parabolic equations. C. R. Math. Acad. Sci. Paris, Ser. I 337: 331–336 · Zbl 1029.35144 · doi:10.1016/S1631-073X(03)00352-2
[2] Agueh M. (2005) Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differential Equations., Vol. 10 3: 309–360 · Zbl 1103.35051
[3] Agueh M. (2008) Rates of decay to equilibria for p-Laplacian type equations. Nonlinear Analysis 68: 1909–1927 · Zbl 1185.35017 · doi:10.1016/j.na.2007.01.043
[4] Barenblatt G.I. (1952) On self-similar motions of compressible fluids in porous media. Prikl. Math. 16: 679–698 (in Russian) · Zbl 0047.19204
[5] Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.L. (2007) Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. math. Acad. Sci. Paris. 344: 431–436 · Zbl 1190.35119 · doi:10.1016/j.crma.2007.01.011
[6] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J. L. Vázquez, Asymptotic of the fast diffusion equation via entropy estimates, to appear in Arch. Rational. Mech. Anal. · Zbl 1178.35214
[7] Bonforte M., Vázquez J.L. (2006) Global positivity estimates and Harnack inequalities for the fast diusion equation. J. Funct. Anal. 240: 399–428 · Zbl 1107.35063 · doi:10.1016/j.jfa.2006.07.009
[8] Calvo N., Díaz J.I., Durany J., Schiavi E., Vázquez C. (2002) On a doubly nonlinear parabolic obstacle problem modeling ice sheet dynamics. SIAM J. App. Math. 63: 683–707 · Zbl 1032.35115
[9] Carrillo J.A., Toscani G. (2000) Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. math. J. 49: 113–141 · Zbl 0963.35098
[10] Carrillo J.A., Lederman C., Markowich P.A., Toscani G. (2002) Poincaré inequalities for linearization of very fast diffusion equations. Nonlinearity 15: 565–580 · Zbl 1011.35025 · doi:10.1088/0951-7715/15/3/303
[11] Carrillo J.A., Vázquez J.L. (2003) Fine asymptotics for fast diffusion equations. Comm. Partial Differential Equations 28: 1023–1056 · Zbl 1036.35100 · doi:10.1081/PDE-120021185
[12] Denzler J., McCann R.J. (2006) Fast diffusion to self-similarity: complete spectrum, long time asymptotics and numerology. Arch. Rational Mech. Anal. 179: 217–263 · Zbl 1082.76105 · doi:10.1007/s00205-005-0386-1
[13] DiBenedetto E. (1993) Degenerate parabolic equations. Springer-Verlag, Berlin Heidelberg New York · Zbl 0794.35090
[14] DiBenedetto E., Herrero M.A. (1990) Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 &lt; p &lt; 2. Arch. Rational Mech. Anal. 111: 225–290 · Zbl 0726.35066 · doi:10.1007/BF00400111
[15] DiBenedetto E., Herrero M.A. (1989) On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. Amer. Math. Soc. 314(no. 1): 187–224 · Zbl 0691.35047 · doi:10.1090/S0002-9947-1989-0962278-5
[16] Dolbeault J., Del Pino M. (2002) Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81: 847–875 · Zbl 1112.35310
[17] Del Pino M., Dolbeault J. (2002) Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian. C. R. Math. Acad. Sci. Paris, Ser. I 334: 365–370 · Zbl 1090.35096 · doi:10.1016/S1631-073X(02)02225-2
[18] Del Pino M., Dolbeault J. (2003) Asymptotic behaviour of nonlinear diffusions. Math. Res. Lett. 10(4): 551–557 · Zbl 1045.35009 · doi:10.4310/MRL.2003.v10.n4.a13
[19] Friedmann A., Kamin S. (1980) The asymptotic behaviour of gas in a n-dimensional porous media. Trans. Amer. Math. Soc. 262(2): 551–563 · Zbl 0447.76076
[20] K. H. Hutter, Mathematical foundation of ice sheet and ice shelf dynamics: A physicist’s view, Free boundary problems: theory and applications, 192-20, Chapman &amp; Hall/CRC Res. Notes math., 409, Boca Raton, FL, 1999. · Zbl 0929.35187
[21] Kim Y.J., McCann R.J. (2006) Potential theory and optimal convergence rates in fast nonlinear diffusion. J. Math. Pures Appl. 86: 42–67 · Zbl 1112.35025
[22] Kamin S., Vázquez J.L. (1988) Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana 4: 339–354 · Zbl 0699.35158 · doi:10.4171/RMI/77
[23] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 1969. · Zbl 0184.52603
[24] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, 1967.
[25] Leibenzon L.S. (1945) General problem of the movement of a compressible fluid in a porous medium. Ivz. Acad. nauk. SSSR, Geography and Geophysics 9: 7–10 (in Russian)
[26] Li J. (2001) Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources. J. Math. Anal. Appl. 264: 49–67 · Zbl 0993.35057 · doi:10.1006/jmaa.2001.7553
[27] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co. Inc., 1996. · Zbl 0884.35001
[28] McCann R.J. (1997) A convexity principle for interacting gases. Adv. math. 128: 153–179 · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[29] R. J. McCann, D. Slepčev, Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not. (2006) Art. ID 24947, 22.
[30] Nirenberg L. (1959) On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13: 115–162 · Zbl 0088.07601
[31] Otto F. (2001) The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial. Differential Equations 26(9): 101–174 · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[32] Persson A. (1960) Bounds for the discrete part of the spectral of a semi-bounded Schrödinger operator. Math. Scand. 8: 143–153 · Zbl 0145.14901
[33] J. L. Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford lecture series in mathematics and its applications, 33, Oxford Univ. Press, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.