Humke, Paul D. Cluster sets of arbitrary functions defined on plane sets. (English) Zbl 0343.04002 Czech. Math. J. 26(101), 448-457 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 03E15 Descriptive set theory 30D40 Cluster sets, prime ends, boundary behavior 26A03 Foundations: limits and generalizations, elementary topology of the line PDF BibTeX XML Cite \textit{P. D. Humke}, Czech. Math. J. 26(101), 448--457 (1976; Zbl 0343.04002) Full Text: EuDML OpenURL References: [1] F. Bagemihl: Ambiguous points of arbitrary planar sets and functions. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 12, S. 205-217 (1966). · Zbl 0149.01704 [2] F. Bagemihl: Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. 41 , 379-382 (1955). · Zbl 0065.06604 [3] F. Bagemihl, P. Humke: Rectifiably ambiguous points of planar sets. J. Australian Math. Soc. Vol. XX-(Series)-part l, pp. 85-109 (1975). · Zbl 0305.04005 [4] H. Hahn: Reelle Funktionen. Leipzig, 1932. · Zbl 0005.38903 [5] P. Humke: Samely ambiguous points of arbitrary planar sets and functions. Zeitsch. f. math. Logik und Grundlagen d. Math. Bd. 19, S. 427-433 (1973). · Zbl 0307.04003 [6] P. Humke: An example of a function with multiple ambiguities. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 21, S. 413-416 (1975). · Zbl 0318.26003 [7] J. E. McMillan: Arbitrary functions defined on plane sets. Michigan Math. J. 14, 445 - 447 (1967). · Zbl 0206.51701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.