zbMATH — the first resource for mathematics

Unsteady response of thin elastic plates subjected to time-dependent loads and external damping. (English) Zbl 0181.52902

Full Text: DOI
[1] Mindlin, R. D.: Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. J. Appl. Mech.18, 31 (1951). · Zbl 0044.40101
[2] Reid, W. P.: Free Vibrations of a Circular Plate. J. Soc. Indust. Appl. Math.10, 668 (1962). · Zbl 0108.19501
[3] Iguchi, S.: Die erzwungenen Schwingungen der rechteckigen Platte. Ing.-Arch.11, 53 (1940). · Zbl 0061.43102
[4] McLachlan, N. W.: Vibrational Problems in Elliptical Coordinates. Quart. Appl. Math.5, 289 (1947). · Zbl 0029.17402
[5] Stani?i?, M. M.: Free Vibration of a Rectangular Plate With Damping Considered. Quart. Appl. Math.12, 361 (1955). · Zbl 0064.42805
[6] Cox, H. L.: Flexural Vibrations of Plates on Uniform Elastic Foundations. J. Royal Aero. Soc.58, 651 (1954).
[7] Cox, H. L.: Vibration of Certain Square Plates Having Similar Adjacent Edges. Quart. J. Mech. Appl. Math.8, 454 (1955). · Zbl 0068.18701
[8] Cox, H. L. andB. Klein: Vibration of Isosceles Triangular Plates. ZAMP6, 68 (1955). · Zbl 0064.19604
[9] Schmidt, H.: Theorie der Biegungsschwingungen frei aufliegender Rechteckplatten unter dem Einfluß beweglicher, zeitlich periodisch veränderlicher Belastungen. Ing.-Arch.2, 449 (1931). · Zbl 0003.07905
[10] Reissner, H.: Theorie der Biegungsschwingungen frei aufliegender Rechteckplatten unter dem Einfluß beweglicher, zeitlich periodisch veränderlicher Belastungen. Bemerkung zur Arbeit von H. Schmidt. Ing.-Arch.2, 668 (1932). · Zbl 0003.36703
[11] Gajendar, N.: Free Vibrations of a Circular Plate. J. Royal Aero. Soc.69, 345 (1965). · Zbl 0158.43806
[12] Weiner, R. S.: Forced Axisymmetric Motions of Circular Elastic Plates. J. Appl. Mech.32, 893 (1965).
[13] Weiner, R. S.: Transient Motion of Circular Elastic Plates Subjected to Impulsive and Moving Loads. The Bell System Tech. J.44, 2409 (1965).
[14] Cheng, D. H. andJ. E. Benveniste: Transient Response of Structural Elements to Traveling Pressure Waves of Arbitrary Shape. Int. J. Mech. Sci.8, 607 (1966).
[15] Ölçer, N. Y.: On a Class of Boundary-Initial Value Problems. Österr. Ing.-Arch.18, 104 (1964).
[16] Ölçer, N. Y.: Note on the General Solution of the Heat Equation. Quart. Appl. Math.24, 380 (1967).
[17] Deverall, L. I. andC. J. Thorne: Some Thin Plate Problems by the Sine Transform. J. Appl. Mech.18, 152 (1951). · Zbl 0044.39403
[18] Hetényi, M.: Beams and Plates on Elastic Foundations and Related Problems. Appl. Mech. Rev.19, 95 (1966).
[19] Timoshenko, S. andS. Woinowsky-Krieger: Theory of Plates and Shells, 2nd. Ed. New York: McGraw-Hill. 1959. · Zbl 0114.40801
[20] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity (Transl. 3rd Russian Ed. by J. R. M. Radok). Groningen: Noordhoff. 1953. · Zbl 0052.41402
[21] Ohlig, R.: Zwei- und vierseitig aufgelagerte Rechteckplatten unter Einzelkraftbelastung. Ing.-Arch.16, 51 (1947).
[22] Ohlig, R.: Die eingespannte Rechteckplatte. Ing.-Arch.17, 243 (1949). · Zbl 0032.12803
[23] Bassali, W. A.: The Transverse Flexure of a Thin Circular Plate Subject to Parabolic Loading Over a Concentric Ellipse. ZAMP11, 176 (1960). · Zbl 0113.18303
[24] Nowinski, J. andP. Rabinowitz: The Method of the Kernel Function in the Theory of Elastic Plates. ZAMP13, 26 (1962). · Zbl 0113.18403
[25] Barta, J.: Ein Verfahren zur Berechnung der Durchbiegung einer eingespannten dünnen elastischen Platte. Österr. Ing.-Arch.17, 57 (1962). · Zbl 0108.37304
[26] Barta, J.: Über dieGreensche Funktion der Plattenbiegungslehre. Österr. Ing.-Arch.17, 65 (1962). · Zbl 0108.37305
[27] Hieke, M.: Zur Statik der homogenen Kreisplatte. ZAMM43, 374 (1963). · Zbl 0119.40602
[28] Martinek, J. andH. P. Thielman: Circle and Sphere Theorems for the Biharmonic Equation. ZAMP16, 494 (1965). · Zbl 0127.05303
[29] Gaydon, F. A.: The Clamped, Thin, Rectangular Plate Under Transverse Loading. Quart. J. Mech. Appl. Math.19, 65 (1966). · Zbl 0139.19203
[30] Buledza, A. V.: An Approximate Method of Solving Boundary Value Problems in the Case of Biharmonic Equation (in Russian). Dokladi Akad. Nauk SSSR170, 495 (1966). · Zbl 0154.37002
[31] Bassali, W. A. andF. R. Barsoum: The Transverse Flexure of Uniformly Loaded Curvilinear and Rectilinear Polygonal Plates. Proc. Camb. Phil. Soc.62, 523 (1966). · Zbl 0145.21701
[32] Mallet, C. A., J. A. Gervaise, andG. C. Sheppey: Le calcul des treillis et plaques encastrés sur leurs quatre cotés. Annales des Ponts et Chaussées136, 357 (1966).
[33] Chen, S. S.-H. andG. Pickett: Bending of Plates of Any Shape and With Any Variation in Boundary Conditions. J. Appl. Mech.34, 217 (1967).
[34] Michell, J. H.: The Flexure of a Circular Plate. Proc. London Math. Soc.34, 223 (1902). · JFM 33.0821.01
[35] Biezeno, C. B. andR. Grammel: Engineering Dynamics, Vol. 2: Elastic Problems of Single Machine Elements (Transl. 2nd German Ed. by M. L. Meyer), pp. 287-292. London and Glasgow: Blackie and Son Ltd. 1956.
[36] Reissner, E.: Über die Biegung der Kreisplatte mit exzentrischer Einzellast. Math. Ann.111, 777 (1935). · JFM 61.0885.03
[37] Nasitta, Kh.: Über die Dimensionierung dünner Kreisplatten unter exzentrisch aufgebrachten Einzellasten. Ing.-Arch.23, 85 (1955). · Zbl 0064.18704
[38] Nasitta, Kh.: Die dünne, freiaufgelagerte Kreisringplatte mit Einzellast. ZAMM41, 31 (1961). · Zbl 0098.16206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.