Dukhnovsky, S. A. A self-similar solution and the tanh-function method for the kinetic Carleman system. (English) Zbl 1495.35117 Bul. Acad. Științe Repub. Mold., Mat. 2022, No. 1(98), 99-110 (2022). MSC: 35L45 35C07 35L60 35Q20 PDF BibTeX XML Cite \textit{S. A. Dukhnovsky}, Bul. Acad. Științe Repub. Mold., Mat. 2022, No. 1(98), 99--110 (2022; Zbl 1495.35117) Full Text: Link OpenURL
d’Ameida, Amah Exact steady solutions for a fifteen velocity model of gas. (English) Zbl 1460.76678 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24–28, 2019. Cham: Birkhäuser. Trends Math., 231-261 (2020). MSC: 76P05 35Q35 82B21 PDF BibTeX XML Cite \textit{A. d'Ameida}, in: Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24--28, 2019. Cham: Birkhäuser. 231--261 (2020; Zbl 1460.76678) Full Text: DOI OpenURL
Oberguggenberger, M. The Carleman system with positive measures as initial data—generalized solutions. (English) Zbl 0735.35033 Transp. Theory Stat. Phys. 20, No. 2-3, 177-197 (1991). Reviewer: M.Oberguggenberger MSC: 35D05 35Q72 35L45 PDF BibTeX XML Cite \textit{M. Oberguggenberger}, Transp. Theory Stat. Phys. 20, No. 2--3, 177--197 (1991; Zbl 0735.35033) Full Text: DOI OpenURL
Cornille, Henri Exact solutions in \(1+1\) dimensions of the general two-velocity discrete Illner model. (English) Zbl 0641.76070 J. Math. Phys. 28, 1567-1579 (1987). Reviewer: R.Illner MSC: 76P05 82B40 PDF BibTeX XML Cite \textit{H. Cornille}, J. Math. Phys. 28, 1567--1579 (1987; Zbl 0641.76070) Full Text: DOI OpenURL
Cabannes, Henri The discrete model of the Boltzmann equation. (English) Zbl 0624.76102 Transp. Theory Stat. Phys. 16, 809-836 (1987). MSC: 76P05 82B40 82C40 PDF BibTeX XML Cite \textit{H. Cabannes}, Transp. Theory Stat. Phys. 16, 809--836 (1987; Zbl 0624.76102) Full Text: DOI OpenURL
Wick, J. Two classes of explicit solutions of the Carleman model. (English) Zbl 0561.35069 Math. Methods Appl. Sci. 6, 515-519 (1984). Reviewer: A.D.Osborne MSC: 35Q99 35C05 PDF BibTeX XML Cite \textit{J. Wick}, Math. Methods Appl. Sci. 6, 515--519 (1984; Zbl 0561.35069) Full Text: DOI OpenURL
Crandall, Michael G.; Tartar, Luc Some relations between nonexpansive and order preserving mappings. (English) Zbl 0449.47059 Proc. Am. Math. Soc. 78, 385-390 (1980). MSC: 47H07 35F25 65M12 PDF BibTeX XML Cite \textit{M. G. Crandall} and \textit{L. Tartar}, Proc. Am. Math. Soc. 78, 385--390 (1980; Zbl 0449.47059) Full Text: DOI OpenURL
Kaper, Hans G.; Leaf, Gary K. Initial value problems for the Carleman equation. (English) Zbl 0431.35024 Nonlinear Anal., Theory Methods Appl. 4, 343-362 (1980). MSC: 35F25 35B40 34G20 35G10 35K25 47H06 82B40 PDF BibTeX XML Cite \textit{H. G. Kaper} and \textit{G. K. Leaf}, Nonlinear Anal., Theory Methods Appl. 4, 343--362 (1980; Zbl 0431.35024) Full Text: DOI OpenURL
Pierre, Michel Un théorème général de generation de semi-groupes non linéaires. (French) Zbl 0343.34050 Isr. J. Math. 23, 189-199 (1976). MSC: 34G99 47H99 PDF BibTeX XML Cite \textit{M. Pierre}, Isr. J. Math. 23, 189--199 (1976; Zbl 0343.34050) Full Text: DOI OpenURL
McKean, H. P. The central limit theorem for Carleman’s equation. (English) Zbl 0315.60013 Isr. J. Math. 21, 54-92 (1975). MSC: 60F05 60K35 60J65 PDF BibTeX XML Cite \textit{H. P. McKean}, Isr. J. Math. 21, 54--92 (1975; Zbl 0315.60013) Full Text: DOI OpenURL
Conner, H. E. Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics. (English) Zbl 0219.35061 J. Differ. Equations 10, 188-203 (1971). MSC: 35L40 PDF BibTeX XML Cite \textit{H. E. Conner}, J. Differ. Equations 10, 188--203 (1971; Zbl 0219.35061) Full Text: DOI OpenURL