×

Fluctuation-dissipation relations in the absence of detailed balance: formalism and applications to active matter. (English) Zbl 07356460

Summary: We present a comprehensive study about the relationship between the way detailed balance is broken in non-equilibrium systems and the resulting violations of the fluctuation-dissipation theorem. Starting from stochastic dynamics with both odd and even variables under time-reversal, we derive an explicit expression for the time-reversal operator, i.e. the Markovian operator which generates the time-reversed trajectories. We then exploit the relation between entropy production and the breakdown of detailed balance to establish general constraints on the non-equilibrium steady-states (NESS), which relate the non-equilibrium character of the dynamics with symmetry properties of the NESS distribution. This provides a direct route to derive extended fluctuation-dissipation relations, expressing the linear response function in terms of NESS correlations. Such framework provides a unified way to understand the departure from equilibrium of active systems and its linear response. We then consider two paradigmatic models of interacting self-propelled particles, namely active Brownian particles and active Ornstein-Uhlenbeck particles. We analyze the non-equilibrium character of these systems (also within a Markov and a Chapman-Enskog approximation) and derive extended fluctuation-dissipation relations for them, clarifying which features of these active model systems are genuinely non-equilibrium.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kubo R, Toda M and Hashitsume N 1991 Statistical Physics II(Nonequilibrium Statistical Mechanics) vol 31 (Berlin: Springer) · Zbl 0996.60501 · doi:10.1007/978-3-642-58244-8
[2] Brown W 1993 Dynamic Light Scattering(The Method and Some Applications) vol 313 (Oxford: Clarendon)
[3] Cipelletti L and Ramos L 2005 Slow dynamics in glassy soft matter J. Phys.: Condens. Matter17 R253 · doi:10.1088/0953-8984/17/6/r01
[4] Kubo R 1957 Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems J. Phys. Soc. Japan12 570-86 · doi:10.1143/jpsj.12.570
[5] Kubo R 1966 The fluctuation-dissipation theorem Rep. Prog. Phys.29 255 · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[6] Hänggi P and Thomas H 1982 Stochastic processes: time evolution, symmetries and linear response Phys. Rep.88 207-319 · doi:10.1016/0370-1573(82)90045-x
[7] Risken H 1996 The Fokker-Planck Equation (Berlin: Springer) · Zbl 0866.60071 · doi:10.1007/978-3-642-61544-3_4
[8] Graham R and Haken H 1971 Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium Z. Phys.243 289-302 · doi:10.1007/bf01394858
[9] Agarwal G S 1972 Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applications Z. Phys.252 25-38 · doi:10.1007/bf01391621
[10] Haken H 1969 Exact stationary solution of a Fokker-Planck equation for multimode laser action including phase locking Z. Phys.219 246-68 · Zbl 0181.57102 · doi:10.1007/bf01397568
[11] Harada T and Sasa S-i 2005 Equality connecting energy dissipation with a violation of the fluctuation-response relation Phys. Rev. Lett.95 130602 · doi:10.1103/physrevlett.95.130602
[12] Speck T and Seifert U 2006 Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state Europhys. Lett.74 391 · doi:10.1209/epl/i2005-10549-4
[13] Prost J, Joanny J-F and Parrondo J M R 2009 Generalized fluctuation-dissipation theorem for steady-state systems Phys. Rev. Lett.103 090601 · doi:10.1103/physrevlett.103.090601
[14] Baiesi M, Maes C and Wynants B 2009 Fluctuations and response of nonequilibrium states Phys. Rev. Lett.103 010602 · doi:10.1103/physrevlett.103.010602
[15] Chetrite R and Gawędzki K 2009 Eulerian and Lagrangian pictures of non-equilibrium diffusions J. Stat. Phys.137 890 · Zbl 1183.82042 · doi:10.1007/s10955-009-9803-4
[16] Seifert U and Speck T 2010 Fluctuation-dissipation theorem in nonequilibrium steady states Europhys. Lett.89 10007 · doi:10.1209/0295-5075/89/10007
[17] Kurchan J 1998 Fluctuation theorem for stochastic dynamics J. Phys. A: Math. Gen.31 3719-29 · Zbl 0910.60095 · doi:10.1088/0305-4470/31/16/003
[18] Marconi U M B, Puglisi A, Rondoni L and Angelo V 2008 Fluctuation-dissipation: response theory in statistical physics Phys. Rep.461 111-95 · doi:10.1016/j.physrep.2008.02.002
[19] Baiesi M and Maes C 2013 An update on the nonequilibrium linear response New J. Phys.15 013004 · Zbl 1451.80002 · doi:10.1088/1367-2630/15/1/013004
[20] Sarracino A and Vulpiani A 2019 On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems Chaos29 083132 · Zbl 1426.82050 · doi:10.1063/1.5110262
[21] Maes C 2020 Response theory: a trajectory-based approach Front. Phys.8 229 · doi:10.3389/fphy.2020.00229
[22] Cates M E 2012 Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys.75 042601 · doi:10.1088/0034-4885/75/4/042601
[23] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Active particles in complex and crowded environments Rev. Mod. Phys.88 045006 · doi:10.1103/revmodphys.88.045006
[24] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active Brownian particles Eur. Phys. J. Spec. Top.202 1-162 · doi:10.1140/epjst/e2012-01529-y
[25] Fily Y and Marchetti M C 2012 Athermal phase separation of self-propelled particles with no alignment Phys. Rev. Lett.108 235702 · doi:10.1103/physrevlett.108.235702
[26] Redner G S, Hagan M F and Baskaran A 2013 Structure and dynamics of a phase-separating active colloidal fluid Phys. Rev. Lett.110 055701 · doi:10.1103/physrevlett.110.055701
[27] Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G and Pagonabarraga I 2018 Full phase diagram of active Brownian disks: from melting to motility-induced phase separation Phys. Rev. Lett.121 098003 · doi:10.1103/physrevlett.121.098003
[28] Szamel G 2014 Self-propelled particle in an external potential: existence of an effective temperature Phys. Rev. E 90 012111 · doi:10.1103/physreve.90.012111
[29] Maggi C, Paoluzzi M, Pellicciotta N, Lepore A, Angelani L and Di Leonardo R 2014 Generalized energy equipartition in harmonic oscillators driven by active baths Phys. Rev. Lett.113 238303 · doi:10.1103/physrevlett.113.238303
[30] Marconi U M B and Maggi C 2015 Towards a statistical mechanical theory of active fluids Soft Matter11 8768-81 · doi:10.1039/c5sm01718a
[31] Fodor É, Nardini C, Cates M E, Tailleur J, Visco P and van Wijland F 2016 How far from equilibrium is active matter? Phys. Rev. Lett.117 038103 · doi:10.1103/physrevlett.117.038103
[32] Dabelow L, Bo S and Eichhorn R 2019 Irreversibility in active matter systems: fluctuation theorem and mutual information Phys. Rev. X 9 021009 · doi:10.1103/physrevx.9.021009
[33] Bonilla L L 2019 Active Ornstein-Uhlenbeck particles Phys. Rev. E 100 022601 · doi:10.1103/physreve.100.022601
[34] Takatori S C, Yan W and Brady J F 2014 Swim pressure: stress generation in active matter Phys. Rev. Lett.113 028103 · doi:10.1103/physrevlett.113.028103
[35] Mallory S A, Šarić A, Valeriani C and Cacciuto A 2014 Anomalous thermomechanical properties of a self-propelled colloidal fluid Phys. Rev. E 89 052303 · doi:10.1103/physreve.89.052303
[36] Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L, Berthier L and Cottin-Bizonne C 2015 Nonequilibrium equation of state in suspensions of active colloids Phys. Rev. X 5 011004 · doi:10.1103/physrevx.5.011004
[37] Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M and Tailleur J 2015 Pressure is not a state function for generic active fluids Nat. Phys.11 673-8 · doi:10.1038/nphys3377
[38] Winkler R G, Wysocki A and Gompper G 2015 Virial pressure in systems of spherical active Brownian particles Soft Matter11 6680-91 · doi:10.1039/c5sm01412c
[39] Wittkowski R, Tiribocchi A, Stenhammar J, Allen R J, Marenduzzo D and Cates M E 2014 Scalar φ 4 field theory for active-particle phase separation Nat. Commun.5 1-9 · doi:10.1038/ncomms5351
[40] Stenhammar J, Marenduzzo D, Allen R J and Cates M E 2014 Phase behaviour of active Brownian particles: the role of dimensionality Soft Matter10 1489-99 · doi:10.1039/c3sm52813h
[41] Levis D, Codina J and Pagonabarraga I 2017 Active Brownian equation of state: metastability and phase coexistence Soft Matter13 8113-9 · doi:10.1039/c7sm01504f
[42] Paliwal S, Rodenburg J, van Roij R and Dijkstra M 2018 Chemical potential in active systems: predicting phase equilibrium from bulk equations of state? New J. Phys.20 015003 · doi:10.1088/1367-2630/aa9b4d
[43] Steffenoni S, Falasco G and Kroy K 2017 Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions Phys. Rev. E 95 052142 · doi:10.1103/physreve.95.052142
[44] Solon A P, Stenhammar J, Cates M E, Kafri Y and Tailleur J 2018 Generalized thermodynamics of motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles New J. Phys.20 075001 · doi:10.1088/1367-2630/aaccdd
[45] Hermann S, de las Heras D and Schmidt M 2019 Non-negative interfacial tension in phase-separated active Brownian particles Phys. Rev. Lett.123 268002 · doi:10.1103/physrevlett.123.268002
[46] Di Leonardo R et al 2010 Bacterial ratchet motors Proc. Natl Acad. Sci.107 9541-5 · doi:10.1073/pnas.0910426107
[47] Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Swimming bacteria power microscopic gears Proc. Natl Acad. Sci.107 969-74 · doi:10.1073/pnas.0913015107
[48] López H M, Gachelin J, Douarche C, Auradou H and Clément E 2015 Turning bacteria suspensions into superfluids Phys. Rev. Lett.115 028301 · doi:10.1103/physrevlett.115.028301
[49] Rafaï S, Jibuti L and Peyla P 2010 Effective viscosity of microswimmer suspensions Phys. Rev. Lett.104 098102 · doi:10.1103/physrevlett.104.098102
[50] Paxton W F, Sundararajan S, Mallouk T E and Sen A 2006 Chemical locomotion Angew. Chem., Int. Ed.45 5420-9 · doi:10.1002/anie.200600060
[51] Palacci J, Cottin-Bizonne C, Ybert C and Bocquet L 2010 Sedimentation and effective temperature of active colloidal suspensions Phys. Rev. Lett.105 088304 · doi:10.1103/physrevlett.105.088304
[52] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Living crystals of light-activated colloidal surfers Science339 936-40 · doi:10.1126/science.1230020
[53] Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C and Bocquet L 2012 Dynamic clustering in active colloidal suspensions with chemical signaling Phys. Rev. Lett.108 268303 · doi:10.1103/physrevlett.108.268303
[54] Sharma A and Brader J M 2016 Communication: Green-Kubo approach to the average swim speed in active Brownian systems J. Chem. Phys.145 161101 · doi:10.1063/1.4966153
[55] Liluashvili A, Ónody J and Voigtmann T 2017 Mode-coupling theory for active Brownian particles Phys. Rev. E 96 062608 · doi:10.1103/physreve.96.062608
[56] Caprini L, Marconi U M B and Vulpiani A 2018 Linear response and correlation of a self-propelled particle in the presence of external fields J. Stat. Mech. 033203 · Zbl 1459.82168 · doi:10.1088/1742-5468/aaa78c
[57] Asheichyk K, Solon A P, Rohwer C M and Krüger M 2019 Response of active Brownian particles to shear flow J. Chem. Phys.150 144111 · doi:10.1063/1.5086495
[58] Warren P B and Allen R J 2012 Malliavin weight sampling for computing sensitivity coefficients in Brownian dynamics simulations Phys. Rev. Lett.109 250601 · doi:10.1103/physrevlett.109.250601
[59] Szamel G 2017 Evaluating linear response in active systems with no perturbing field Europhys. Lett.117 50010 · doi:10.1209/0295-5075/117/50010
[60] Cugliandolo L F 2011 The effective temperature J. Phys. A: Math. Theor.44 483001 · Zbl 1238.82012 · doi:10.1088/1751-8113/44/48/483001
[61] Loi D, Mossa S and Cugliandolo L F 2008 Effective temperature of active matter Phys. Rev. E 77 051111 · doi:10.1103/physreve.77.051111
[62] Levis D and Berthier L 2015 From single-particle to collective effective temperatures in an active fluid of self-propelled particles Europhys. Lett.111 60006 · doi:10.1209/0295-5075/111/60006
[63] Ben-Isaac E, Park YongK, Popescu G, Brown F L H, Gov N S and Shokef Y 2011 Effective temperature of red-blood-cell membrane fluctuations Phys. Rev. Lett.106 238103 · doi:10.1103/physrevlett.106.238103
[64] Cugliandolo L F, Gonnella G and Petrelli I 2019 Effective temperature in active Brownian particles Fluctuation Noise Lett.18 1940008 · doi:10.1142/s021947751940008x
[65] Eldeen S, Muoio R, Blaisdell-Pijuan P, La N, Gomez M, Vidal A and Ahmed W 2020 Quantifying the non-equilibrium activity of an active colloid Soft Matter16 7202-9 · doi:10.1039/D0SM00398K
[66] Mandal S, Liebchen B and Löwen H 2019 Motility-induced temperature difference in coexisting phases Phys. Rev. Lett.123 228001 · doi:10.1103/physrevlett.123.228001
[67] Flenner E and Szamel G 2020 Active matter: quantifying the departure from equilibrium (arXiv:2004.11925)
[68] Petrelli I, Cugliandolo L F, Gonnella G and Suma A 2020 Effective temperatures in inhomogeneous passive and active bidimensional Brownian particle systems Phys. Rev. E 102 012609 · doi:10.1103/physreve.102.012609
[69] Dal Cengio S, Levis D and Pagonabarraga I 2019 Linear response theory and Green-Kubo relations for active matter Phys. Rev. Lett.123 238003 · doi:10.1103/physrevlett.123.238003
[70] Van Kampen N G 1989 Langevin-like equation with colored noise J. Stat. Phys.54 1289-308 · Zbl 0713.60072 · doi:10.1007/bf01044716
[71] Qian H 1998 Vector field formalism and analysis for a class of thermal ratchets Phys. Rev. Lett.81 3063-6 · doi:10.1103/physrevlett.81.3063
[72] Qian H, Qian M and Tang X 2002 Thermodynamics of the general diffusion process: time-reversibility and entropy production J. Stat. Phys.107 1129-41 · Zbl 1029.82021 · doi:10.1023/a:1015109708454
[73] Wang J, Xu L and Wang E 2008 Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations Proc. Natl Acad. Sci.105 12271-6 · doi:10.1073/pnas.0800579105
[74] Evans D J and Morriss G 2008 Statistical Mechanics of Nonequilibrium Liquids 2nd edn (Cambridge: Cambridge University Press) · Zbl 1189.82064 · doi:10.1017/CBO9780511535307
[75] Gardiner C 2009 Stochastic Methods (Berlin: Springer) · Zbl 1181.60001
[76] Tailleur J, Tănase-Nicola S and Kurchan J 2006 Kramers equation and supersymmetry J. Stat. Phys.122 557-95 · Zbl 1149.81013 · doi:10.1007/s10955-005-8059-x
[77] Kurchan J 2009 Six out of equilibrium lectures (arXiv:0901.1271)
[78] Polettini M 2013 Of dice and men. Subjective priors, gauge invariance, and nonequilibrium thermodynamics (arXiv:1307.2057)
[79] Falcioni M, Isola S and Vulpiani A 1990 Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics Phys. Lett. A 144 341-6 · doi:10.1016/0375-9601(90)90137-d
[80] Cugliandolo L F, Kurchan J and Parisi G 1994 Off equilibrium dynamics and aging in unfrustrated systems J. Phys. I 4 1641-56 · doi:10.1051/jp1:1994212
[81] Ge H 2014 Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes Phys. Rev. E 89 022127 · doi:10.1103/physreve.89.022127
[82] Baiesi M, Boksenbojm E, Maes C and Wynants B 2010 Nonequilibrium linear response for Markov dynamics, II: inertial dynamics J. Stat. Phys.139 492-505 · Zbl 1188.82044 · doi:10.1007/s10955-010-9951-6
[83] Freitas N, Delvenne J-C and Esposito M 2019 Stochastic and quantum thermodynamics of driven RLC networks (arXiv:1906.11233)
[84] Spinney R E and Ford I J 2012 Entropy production in full phase space for continuous stochastic dynamics Phys. Rev. E 85 051113 · doi:10.1103/physreve.85.051113
[85] Qian H 2001 Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation Phys. Rev. E 65 016102 · doi:10.1103/physreve.65.016102
[86] Seifert U 2005 Entropy production along a stochastic trajectory and an integral fluctuation theorem Phys. Rev. Lett.95 040602 · doi:10.1103/physrevlett.95.040602
[87] Feng H and Wang J 2011 Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem J. Chem. Phys.135 234511 · doi:10.1063/1.3669448
[88] Solon A P, Cates M E and Tailleur J 2015 Active Brownian particles and run-and-tumble particles: a comparative study Eur. Phys. J. Spec. Top.224 1231-62 · doi:10.1140/epjst/e2015-02457-0
[89] Peter H and Jung P 1994 Colored noise in dynamical systems Adv. Chem. Phys.89 239-326 · doi:10.1002/9780470141489.ch4
[90] Maggi C, Marconi U M B, Gnan N and Di Leonardo R 2015 Multidimensional stationary probability distribution for interacting active particles Sci. Rep.5 10742 · doi:10.1038/srep10742
[91] Wittmann R, Maggi C, Sharma A, Scacchi A, Brader J M and Marconi U M B 2017 Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the fox and unified colored noise approximations J. Stat. Mech. 113207 · Zbl 1457.82272 · doi:10.1088/1742-5468/aa8c1f
[92] Fox R F 1986 Uniform convergence to an effective Fokker-Planck equation for weakly colored noise Phys. Rev. A 34 4525 · doi:10.1103/physreva.34.4525
[93] Fox R F 1986 Functional-calculus approach to stochastic differential equations Phys. Rev. A 33 467 · doi:10.1103/physreva.33.467
[94] Farage T F, Krinninger P and Brader J M 2015 Effective interactions in active Brownian suspensions Phys. Rev. E 91 042310 · doi:10.1103/physreve.91.042310
[95] Wittmann R and Brader J M 2016 Active Brownian particles at interfaces: an effective equilibrium approach Europhys. Lett.114 68004 · doi:10.1209/0295-5075/114/68004
[96] Rein M and Speck T 2016 Applicability of effective pair potentials for active Brownian particles Eur. Phys. J. E 39 84 · doi:10.1140/epje/i2016-16084-7
[97] Dadhichi L P, Maitra A and Ramaswamy S 2018 Origins and diagnostics of the nonequilibrium character of active systems J. Stat. Mech. 123201 · Zbl 1457.82307 · doi:10.1088/1742-5468/ab02eb
[98] Seifert U 2019 From stochastic thermodynamics to thermodynamic inference Annu. Rev. Condens. Matter Phys.10 171-92 · doi:10.1146/annurev-conmatphys-031218-013554
[99] Chapman S, Cowling T G, Burnett D and Cercignani C 1990 The Mathematical Theory of Non-uniform Gases(An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases) (Cambridge: Cambridge University Press) Cambridge Mathematical Library
[100] Grad H 1958 Principles of the Kinetic Theory of Gases (Berlin: Springer) pp 205-94
[101] Bonilla L L and Soler J S 2001 High-field limit of the Vlasov-Poisson-Fokker-Planck system: a comparison of different perturbation methods Math. Models Methods Appl. Sci.11 1457-68 · Zbl 1012.82023 · doi:10.1142/s0218202501001410
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.