×

Geodesic excursions to infinity in Riemann surfaces. (English) Zbl 0823.30030

Let \(S\) be a Riemann surface that has the unit disk \(\mathbb{D}\) as its universal covering surface: thus \(S\) is conformally equivalent to \(\mathbb{D}/G\) for some Fuchsian group \(G\). The authors prove a very interesting relation between the Hausdorff dimension of the geodesics that go to the infinity of \(S\) and the decay of the injectivity radius of \(S\). This can be expressed as follows: Let \(L_ c(G)\) be the conical (angular) limit set of the group \(G\). Then, for every \(\varepsilon> 0\), there exist \(r_ n\to 1\) and \(| z_ n|< r_ n\), \(g_ n\in G\), \(g_ n\neq id\) such that \[ d_{\mathbb{D}}(z_ n, g_ n(z_ n))< (1- r_ n)^{1-\dim\otimes \mathbb{D}\backslash L_ c(G))- \varepsilon}. \] The authors present two proofs. One uses a theorem of Littlewood about the growth of analytic functions with range in a given domain and works for the case that \(S\) is planar.
The proof for the general cases uses, among other things, an idea of Sullivan. There are several remarks and examples.

MSC:

30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlfors, L. V.; Sario, L., Riemann Surfaces (1960), Princeton: Princeton University Press, Princeton · Zbl 0196.33801
[2] Buser, P., Geometry and Spectra of Compact Riemann Surfaces (1992), Basel: Birkhaüser, Basel · Zbl 0770.53001
[3] Beardon, A.; Gehring, F., Schwarzian derivative, Kernel functions and the Poincaré metric, Comment. Math. Helv., 55, 50-64 (1980) · Zbl 0438.30014
[4] Beardon, A.; Pommerenke, Ch., The Poincaré metric of plane domains, J. London Math. Soc., 18, 475-483 (1978) · Zbl 0399.30008
[5] Fernández, J. L.; LLorente, J. G., A note on the boundary behaviour of harmonic functions, J. London Math. Soc., 46, 295-300 (1992) · Zbl 0777.31001
[6] Kanai, M., Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, 38, 227-238 (1986) · Zbl 0577.53031
[7] Littlewood, J. E., The Theory of Functions (1944), Oxford: Oxford University Press, Oxford · Zbl 0060.19906
[8] Lyons, T.; Sullivan, D., Function theory, random paths and covering spaces, J. Differ. Geom., 19, 299-323 (1984) · Zbl 0554.58022
[9] Makarov, N. G., On a class of exceptional sets for conformal mappings, Matematischeskii-Sbornik, 180, 9, 1171-1182 (1989) · Zbl 0688.30006
[10] Nevanlinna, R., Analytic Functions (1970), Berlin: Springer-Verlag, Berlin · Zbl 0199.12501
[11] Pommerenke, Ch., Univalent Functions (1976), Göttingen: Vandenhoeck & Ruprecht, Göttingen
[12] Pommerenke, Ch., On Bloch functions, J. London Math. Soc., 2, 2, 689-695 (1970) · Zbl 0199.39803
[13] Sullivan, D., Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension 2, Lecture Notes in Mathematics894, Geometry Symposium, Utrecht 1980 (1981), Berlin: Springer-Verlag, Berlin · Zbl 0486.30035
[14] Sario, L.; Nakai, M., Classification Theory of Riemann Surfaces (1970), Berlin: Springer-Verlag, Berlin · Zbl 0199.40603
[15] Tsuji, M., Potential Theory in Modem Function Theory (1960), New York: Chelsea, New York
[16] Weitsman, A., Symmetrization of the Poincaré metric, Annals of Math., 124, 159-169 (1986) · Zbl 0604.30028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.