×

Approximation by harmonic functions of closed subsets of Riemann surfaces. (English) Zbl 0671.30037

This paper discusses various cases of the following general question: Given a closed set F on a Riemann surface \(\Omega\) and two continuous functions u, \(\epsilon\) on F with \(\epsilon (z)>0\) everywhere, find a harmonic function h on \(\Omega\) such that \(| h-u| <\epsilon\) on F. Both uniform (\(\epsilon\) constant) and better-than-uniform or Carleman approximation (any \(\epsilon (z)>0)\) is considered and the authors also consider the case where the approximating harmonic functions are allowed to have logarithmic singularities. One of their results is a geometric characterization of the sets F with the property that any continuous function on F which is harmonic in \(F^ 0\) can be approximated in the Carleman sense by functions harmonic in all of \(\Omega\).
Reviewer: B.Øksendal

MSC:

30F15 Harmonic functions on Riemann surfaces
30E10 Approximation in the complex plane
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ancona, A., Sur une conjecture concernant la capacité et l’effilement, Théorie du Potentiel, 34-68 (1984), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0555.31002
[2] Bagby, T., A uniqueness theorem for harmonic functions on Riemann surfaces, Duke Math. J., 36, 91-93 (1969) · Zbl 0185.19602
[3] [B2] T. Bagby,A Runge theorem for harmonic functions on closed subsets of Riemann surfaces, Proc. Am. Math. Soc. (to appear). · Zbl 0656.31001
[4] Bliedtner, J.; Hansen, W., Simplicial cones in potential theory, Inv. Math., 29, 83-110 (1975) · Zbl 0308.31011
[5] Boivin, A., Carleman approximation on Riemann surfaces, Math. Ann., 275, 57-70 (1986) · Zbl 0583.30035
[6] Boivin, A.; Gauthier, P. M., Tangential approximation, Linear and Complex Analysis Problem Book, 453-456 (1984), Heidelberg: Springer-Verlag, Heidelberg
[7] Boivin, A.; Gauthier, P. M., Approximation harmonique sur les surfaces de Riemann, Can J. Math., 36, 1-8 (1984) · Zbl 0509.31003
[8] Campbell, D. M.; Clunie, J. G.; Hayman, W. K.; Brannan, D. A.; Clunie, J. G., Research problems in complex analysis, Aspects of Contemporary Complex Analysis, 527-572 (1980), New York: Academic Press, New York · Zbl 0497.30001
[9] Curtis, P. C.; Butzer, P. L.; Szökefalvi-Nagy, B., On a theorem of Keldysh and Wiener, Abstract Spaces and Approximation, 351-356 (1969), Basel: Birkhauser, Basel · Zbl 0197.37603
[10] Debiard, A.; Gaveau, B., Potential fin et algèbres de fonctions analytiques I, J. Funct. Anal., 16, 289-304 (1974) · Zbl 0297.31004
[11] Deny, J., Systèmes totaux de functions harmoniques, Ann. Inst. Foruier, 1, 103-113 (1949)
[12] Gamelin, T. W., Uniform Algebras and Jensen Measures (1978), Cambridge: Cambridge University Press, Cambridge · Zbl 0418.46042
[13] Gamelin, T. W.; Rossi, H.; Birtel, F. T., Jensen measures and algebras of analytic functions, Function Algebras, 15-35 (1986), Chicago: Scott-Foresman, Chicago · Zbl 0144.37403
[14] Gauthier, P. M., Tangential aproximation by entire functions and functions holomorphic in a disc, Izv. Akad. Nauk Armjan., SSR Ser. Mat., 4, 319-326 (1969) · Zbl 0189.36006
[15] Gauthier, P. M., Carleman approximation on unbounded sets by harmonic functions with Newtonian singularities, Analytic Functions Blazejewko 1982, 177-181 (1983), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0531.31005
[16] Gauthier, P. M., Uniform and better-than-uniform approximations on unbounded sets, Complex Analysis I, Univ. of Md., 149-157 (1987), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0623.30049
[17] Gauthier, P. M.; Goldstein, M.; Ow, W. H., Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Am. Math. Soc., 261, 169-183 (1980) · Zbl 0447.30035
[18] Gauthier, P. M.; Hengartner, W.; Ciesielski, Z.; Musielak, J., Uniform approximation on closed sets by functions analytic on a Riemann surface, Approximation Theory, 63-70 (1975), Dordrecht: Reidel, Dordrecht · Zbl 0322.30034
[19] [GH2] P. M. Gauthier and W. Hengartner,Approximation Uniforme Qualitative sur des Ensembles Non-bornés, Presses de l‘Université de Montréal, 1982. · Zbl 0482.30028
[20] Halmos, P. R., Measure Theory (1950), Princeton: Van Nostrand, Princeton · Zbl 0040.16802
[21] Hedberg, L. I.; Wolff, T. H., Thin sets in, nonlinear potential theory, Ann. Inst. Fourier (Grenoble), 33, 161-187 (1983) · Zbl 0508.31008
[22] Helms, L. L., Introduction to Potential Theory (1975), Huntington, New York: Krieger, Huntington, New York · Zbl 0188.17203
[23] Keldyš, M. V., On the solubility and stability of the Dirichlet problem, Uspehi Mat. Nauk, 8, 171-231 (1941) · JFM 67.0340.02
[24] [L] M. Labrèche,De l’approximation harmonique uniforme, Thèse, Université de Montréal, 1982.
[25] Landkof, N. S., Foundations of Modern Potential Theory (1972), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0253.31001
[26] Nakai, M.; Sario, L., Classification Theory of Riemann Surfaces (1970), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0199.40603
[27] Phelps, R., Lectures on Choquet’s Theorem (1966), Princeton: Van Nostrand, Princeton · Zbl 0135.36203
[28] Scheinberg, S., Uniform approximation by meromorphic functions having prescribed poles, Math. Ann., 243, 83-93 (1979) · Zbl 0393.30031
[29] Šaginjan, A. A., Tangential harmonic and gradient approximations, Doklady Acad. Sci. Arm. SSR, 77, 3-5 (1983) · Zbl 0535.31001
[30] Šaginjan, A. A., On tangential harmonic approximation and some related problems, Complex Analysis I, Univ. of Md., 280-286 (1987), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0647.31002
[31] Tsuji, M., Potential Theory in Modern Function Theory (1975), New York: Chelsea, New York · Zbl 0322.30001
[32] Vituškin, A. G., analytic capacity of sets and problems in approximation theory, Uspehi Mat. Nauk, 22, 141-199 (1967) · Zbl 0157.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.