×

The type problem for Riemann surfaces via Fenchel-Nielsen parameters. (English) Zbl 07740399

Summary: A Riemann surface \(X\) is said to be of parabolic type if it does not support a Green’s function. Equivalently, the geodesic flow on the unit tangent bundle of \(X\) (equipped with the hyperbolic metric) is ergodic. Given a Riemann surface \(X\) of arbitrary topological type and a hyperbolic pants decomposition of \(X\), we obtain sufficient conditions for parabolicity of \(X\) in terms of the Fenchel-Nielsen parameters of the decomposition. In particular, we initiate the study of the effect of twist parameters on parabolicity. A key ingredient in our work is the notion of nonstandard half-collar about a hyperbolic geodesic. We show that the modulus of such a half-collar is much larger than the modulus of a standard half-collar as the hyperbolic length of the core geodesic tends to infinity. Moreover, the modulus of the annulus obtained by gluing two nonstandard half-collars depends on the twist parameter, unlike in the case of standard collars. Our results are sharp in many cases. For instance, for zero-twist flute surfaces as well as for half-twist flute surfaces with concave sequences of lengths our results provide a complete characterization of parabolicity in terms of the length parameters. It follows that parabolicity is equivalent to completeness in these cases. Applications to other topological types such as surfaces with infinite genus and one end (also known as the infinite Loch-Ness monster), the ladder surface, and abelian covers of compact surfaces are also studied.
{© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.}

MSC:

30F20 Classification theory of Riemann surfaces
30F25 Ideal boundary theory for Riemann surfaces
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.Agard, A geometric proof of Mostow’s rigidity theorem for groups of divergence type, Acta Math.151 (1983), no. 3-4, 231-252. · Zbl 0532.30038
[2] L. V.Ahlfors, Zur Bestimmung des Typus einer Riemannschen Fläche, Comment. Math. Helv.3 (1931), 173-177. · JFM 57.0370.03
[3] L. V.Ahlfors, Sur le type d’une surface de Riemann, C.R. Acad. Sc. Paris201 (1935), 30-32. · JFM 61.0365.01
[4] L. V.Ahlfors, Conformal invariants: topics in geometric function theory, McGraw‐Hill Series in Higher Mathematics. McGraw‐Hill Book Co., New York-Düsseldorf-Johannesburg, 1973, ix+157 pp. · Zbl 0272.30012
[5] L. V.Ahlfors, Lectures on quasiconformal mappings, 2nd ed. (with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard), University Lecture Series, vol. 38, Amer. Math. Soc., Providence, RI, 2006, viii+162 pp. · Zbl 0138.06002
[6] L.Ahlfors and L.Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, NJ, 1960. · Zbl 0196.33801
[7] V.Álvarez and J.Rodríguez, Structure theorems for Riemann and topological surfaces, J. Lond. Math. Soc. (2)69 (2004), 153-168. · Zbl 1053.30036
[8] K.Astala and M.Zinsmeister, Mostow rigidity and Fuchsian groups, C. R. Acad. Sci. Paris Sér. I Math.311 (1990), no. 6, 301-306. · Zbl 0709.30039
[9] A.Basmajian, Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math. Soc.336 (1993), no. 1, 421-444. · Zbl 0768.30028
[10] A.Basmajian and Y.Kim, Geometrically infinite surfaces with discrete length spectra (English summary), Geom. Dedicata137 (2008), 219-240. · Zbl 1167.30022
[11] A.Basmajian and D.Šarić, Geodesically complete hyperbolic structures, Math. Proc. Cambridge Philos. Soc.166 (2019), no. 2, 219-242. · Zbl 1412.30133
[12] A.Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer, New York, 1983. · Zbl 0528.30001
[13] A.Beardon and D.Minda, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications. Narosa, New Delhi, 2007, pp. 9-56. · Zbl 1208.30001
[14] C.Bishop, Divergence groups have the Bowen property, Ann. of Math. (2)154 (2001), no. 1, 205-217. · Zbl 0999.37030
[15] P.Buser, Geometry and spectra of compact Riemann surfaces (reprint of the 1992 edition), Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. · Zbl 1239.32001
[16] J. L.Fernández and M. V.Melián, Escaping geodesics of Riemannian surfaces, Acta Math.187 (2001), no. 2, 213-236. · Zbl 1001.53025
[17] J. L.Fernández and J. M.Rodríguez, Area growth and Green’s function of Riemann surfaces, Ark. Mat.30 (1992), no. 1, 83-92. · Zbl 0766.30038
[18] A.Fletcher and V.Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics, vol. 11, Oxford University Press, Oxford, 2007, viii+189 pp. · Zbl 1103.30002
[19] J.Garnett and D.Marshall, Harmonic measure (reprint of the 2005 original), New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2008. · Zbl 1139.31001
[20] A.Haas and P.Susskind, The geometry at infinity of a hyperbolic Riemann surface of infinite type, Geom. Dedicata130 (2007), 1-24. · Zbl 1146.30022
[21] H.Hakobyan and D.Šarić, Vertical limits of graph domains, Proc. Amer. Math. Soc.144 (2016), no. 3, 1223-1234. · Zbl 1338.30040
[22] S.Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z.245 (2003), no. 2, 255-292. · Zbl 1037.31009
[23] J.Kahn and V.Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2)175 (2012), no. 3, 1127-1190. · Zbl 1254.57014
[24] J.Kahn and V.Markovic, The good pants homology and the Ehrenpreis conjecture, Ann. of Math. (2)182 (2015), no. 1, 1-72. · Zbl 1400.57021
[25] E.Kinjo, On Teichmüller metric and the length spectrums of topologically infinite Riemann surfaces, Kodai Math. J.34 (2011), no. 2, 179-190. · Zbl 1237.30015
[26] H.Hakobyan and D.Šarić, Limits of Teichmüller geodesics in the universal Teichmüller space, Proc. Lond. Math. Soc. (3)116 (2018), no. 6, 1599-1628. · Zbl 1394.30029
[27] O.Lehto and K. I.Virtanen, Quasiconformal mappings in the plane, 2nd ed. (translated from the German by K. W. Lucas), Die Grundlehren der mathematischen Wissenschaften, vol. 126. Springer, New York-Heidelberg, 1973. · Zbl 0267.30016
[28] T.Lyons and D.Sullivan, Function theory, random paths and covering spaces, J. Differential Geom.19 (1984), no. 2, 299-323. · Zbl 0554.58022
[29] B.Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math.10 (1985), 381-386. · Zbl 0587.30043
[30] K.Matsuzaki, A countable Teichmüller modular group, Trans. Amer. Math. Soc.357 (2005), no. 8, 3119-3131. · Zbl 1136.30011
[31] K.Matsuzaki and J.Rodríguez, Planar Riemann Surfaces with unifromly distributed cusps: parabolicity and hyperbolicity, Math. Nachr.290 (2017), no. 7, 1097-1112. · Zbl 1369.30047
[32] C.McMullen, Renormalization and 3‐manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. · Zbl 0860.58002
[33] A.Mori, A note on unramified abelian covering surfaces of a closed Riemann surface, J. Math. Soc. Japan6 (1954), 162-176. · Zbl 0059.07003
[34] P. J.Myrberg, Über die Existenz von positiven harmonischen Funktionen auf Riemannschen Flächen. (German) Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 214-216. · Zbl 0056.07501
[35] R.Nevanlinna, Ein Satz über offene Riemannsche Flächen. (German) Ann. Acad. Sci. Fenn. (A)54 (1940), no. 3, 16 pp. · JFM 66.1254.01
[36] R.Nevanlinna, Über die Existenz von beschränkten Potentialfunktionen auf Flächen von unendlichem Geschlecht, (German) Math. Z.52 (1950), 599-604. · Zbl 0036.05003
[37] P.Nicholls, Fundamental regions and the type problem for a Riemann surface, Math. Z.174 (1980), no. 2, 187-196. · Zbl 0423.30038
[38] P.Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. · Zbl 0674.58001
[39] H.Parlier, A short note on short pants, Canad. Math. Bull.57 (2014), no. 4, 870-876. · Zbl 1307.30079
[40] H.Parlier, Interrogating surface length spectra and quantifying isospectrality, Math. Ann.370 (2018), no. 3-4, 1759-1787. · Zbl 1394.32011
[41] A.Phillips and D.Sullivan, Geometry of leaves, Topology20 (1981), no. 2, 209-218. · Zbl 0454.57016
[42] M.Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergodic Theory Dynam. Systems1 (1981), no. 1, 107-133. · Zbl 0469.58012
[43] L.Sario, Capacity of the boundary and of a boundary component, Ann. of Math. (2)59 (1954), 135-144. · Zbl 0055.07403
[44] L.Sario and M.Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, vol. 164, Springer, New York-Berlin, 1970. · Zbl 0199.40603
[45] D.Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics (Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, NY, 1978), Ann. of Math. Stud., vol. 97, pp. 465-496, Princeton University Press, Princeton, NJ, 1981. · Zbl 0567.58015
[46] P.Tukia, Differentiability and rigidity of Möbius groups, Invent. Math.82 (1985), no. 3, 557-578. · Zbl 0564.30033
[47] J.Väisälä, Lectures on \(n\)‐dimensional quasiconformal mappings, Lecture Notes in Mathematics, vol. 229, Springer, Berlin-New York, 1971, xiv+144 pp. · Zbl 0221.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.