×

Cobordisms in problems of algebraic topology. (English. Russian original) Zbl 0398.57041

J. Sov. Math. 7, 629-653 (1977); translation from Itogi Nauki Tekh., Ser. Algebra Topologiya Geom. 13, 231-271 (1975).

MSC:

57R90 Other types of cobordism
57R85 Equivariant cobordism
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. B. Antonevich, ?The index of a pseudodifferential operator with finite shift group,? Dokl. Akad. Nauk SSSR, 190, No. 4, 751?752 (1970).
[2] A. B. Antonevich, ?Pseudodifferential operators with shift,? in: Proc. Seventh Summer Math. School, 1969 [in Russian], Kiev (1970), pp. 264?273.
[3] A. B. Antonevich, ?Elliptic pseudodifferential operators with finite shift group,? Izv. Akad. Nauk SSSR Ser. Mat.,37, No. 3, 663?675 (1973).
[4] A. B. Antonevich, ?Homotopic stability of the G-index of a pseudodifferential operator,? Izv. Akad. Nauk BulgSSR Ser. Fiz.-Mat., No. 4, 42?44 (1973).
[5] V. M. Bukhshtaber, ?Representing spaces for a K-functor with coefficients,? Dokl. Akad. Nauk SSSR,186, No. 3, 499?502 (1969). · Zbl 0216.19502
[6] V. M. Bukhshtaber, ?The Chern-Dold character in cobordism I,? Mat. Sb.,83, No. 4, 575?595 (1970).
[7] V. M. Bukhshtaber, ?Spectral sequences associated with the Chern-Dold character in cobordisms,? Usp. Mat. Nauk,26, No. 1, 214?215 (1971). · Zbl 0219.57027
[8] V. M. Bukhshtaber, ?Bivalent formal groups. Applications to cobordisms,? ibid., No. 3, 195?196.
[9] V. M. Bukhshtaber, ?Projectors in unitary cobordisms associated with SU-theory,? ibid.,27, No. 6. 231?232 (1972).
[10] V. M. Bukhshtaber, ?Classification of bivalent formal groups,? ibid.,28, No. 3, 173?174 (1973).
[11] V. M. Bukhshtaber, New Methods in Cobordism Theory [in Russian: supplement to Russian translation of R. Stong’s book, Notes on Cobordism Theory-reference 287, this bibliography].
[12] V. M. Bukhshtaber and A. S. Mishchenko, ?K-Theory on the category of infinite cell complexes,? Izv. Akad. Nauk SSSR Ser. Mat.,32, No. 3, 560?604 (1968).
[13] V. M. Bukhshtaber and A. S. Mishchenko, ?Note on ?K-theory on the category of infinite cell complexes?,? ibid.,33, No. 1, 239 (1969). · Zbl 0182.25803
[14] V. M. Bukhshtaber, A. S. Mishchenko, and S. P. Novikov, ?Formal groups and their role in algebraic topology,? Usp. Mat. Nauk Ser. Mat.,26, No. 2, 131?154 (1970). · Zbl 0226.55007
[15] V. M. Bukhshtaber and S. P. Novikov, ?Formal groups, power systems, and Adams operators,? Mat. Sb.,84, No. 1, 81?118 (1971). · Zbl 0222.55008
[16] S. M. Vishik, ?Vector fields in the neighborhood of the boundary of a manifold,? Vest. Mosk. Inst. Mat. Mekh., No. 1, 21?28 (1972).
[17] N. Ya. Gozman, ?The form of the ring of self-conjugate cobordisms in the ring of complex nonoriented cobordisms,? Dokl. Akad. Nauk SSSR,216, No. 6, 1212?1214 (1974).
[18] S. M. Gusein-Zade, ?U-Actions of the circle and fixed points,? Izv. Akad. Nauk SSSR Ser. Mat.,35, No. 5, 1120?1136 (1971).
[19] S. M. Gusein-Zade, ?Action of the circle on manifolds,? Mat. Zametki,10, No. 5, 511?518 (1971).
[20] S. M. Gusein-Zade and I. M. Krichever, ?Formulas for fixed points of action of the group Zp,? Usp. Mat. Nauk,28, No. 1, 237?238 (1973).
[21] A. S. Dynin, ?Elliptical boundary problems for pseudodifferential complexes,? Funktional. Analiz Ego Prilozheniya,6, No. 11, 75?76 (1972).
[22] G. G. Kasparov, ?Invariants of classical lens manifolds in cobordism theory,? Izv. Akad. Nauk SSSR Ser. Mat.,33, No. 4, 735?747 (1969).
[23] V. R. Kireitov, ?Simplectic cobordisms,? Mat. Sb.,83, No. 1, 77?85 (1970). · Zbl 0216.20201
[24] P. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer-Verlag (1964). · Zbl 0125.40103
[25] I. M. Krichever, ?Bordisms of groups acting freely on spheres,? Usp. Mat. Nauk,26, No. 6, 245?246 (1971). · Zbl 0228.57022
[26] I. M. Krichever, ?Actions of finite cyclic groups on quasicomplex manifolds,? Mat. Sb.,90, No. 2, 306?319 (1973). · Zbl 0258.57017
[27] I. M. Krichever, ?Note on ?Actions of finite cyclic groups on quasicomplex manifolds,?? ibid.,95, No. 1, 146?147 (1974). · Zbl 0274.57015
[28] I. M. Krichever, ?Formal groups and the Atiyah-Hirzebruch formula,? Izv. Akad. Nauk SSSR Ser. Mat.,38, No. 6, 1289?1304 (1974).
[29] I. M. Krichever, ?Equivariant Hirzebruch genuses. Atiyah-Hirzebruch formula,? Usp. Mat. Nauk,30, No. 1, 243?244 (1975). · Zbl 0365.57011
[30] P. A. Kuchment and A. A. Pankov, ?Classifying spaces for the groups K g p,q (X),? Dokl. Akad. Nauk SSSR,204, No. 5, 1049?1052 (1972). · Zbl 0268.55002
[31] Yu. I. Manin, ?Theory of commutative formal groups on fields of finite characteristic,? Usp. Mat. Nauk,18, No. 6, 3?90 (1963). · Zbl 0128.15603
[32] O. V. Manturov, ?Tensor bundles over complex generator bundles on spheres S2n,? Tr. Semin. Vekt. Tensor. Analiz. i Prilozh. Geom. Mekh. i Fiz. Mosk. Inst., No. 15, 119?125 (1970). · Zbl 0211.26402
[33] O. V. Manturov, ?Multiplication in a complex K-functor,? Izv. Akad. Nauk SSSR Ser. Mat.,35, No. 3, 627?654 (1971).
[34] O. V. Manturov, ?Geometric models of vector bundles over compact uniform spaces,? Dokl. Akad. Nauk SSSR,201, No. 2, 273?276 (1971). · Zbl 0249.55013
[35] O. V. Manturov, ?Toward a theory of vector bundles over compact uniform spaces,? ibid.,202, No. 5, 1004?1007 (1972).
[36] O. V. Manturov, ?Invariant vector bundles over compact Lie groups,? ibid.,206, No. 6, 1297?1300 (1972).
[37] O. V. Manturov, ?Geometric model of a generator in K C 0 (S2n,? Tr. Semin. Vekt. Tensor. Analiz. i Prilozh. Geom. Mekh. i Fiz. Mosk. Inst., No. 16, 153?165 (1972).
[38] O. V. Manturov, ?Generators in a complex K-functor of compact uniform spaces,? Mat. Sb.,90, No. 1, 48?85 (1973).
[39] O. K. Mironov, ?Coefficients of formal series in U-theory associated with fixed points,? Tez. VI Vsesoyuzn. Top. Konf. Tbilisi Okt. 1972, Metsniereba (1972).
[40] A. S. Mishchenko, ?Manifolds with action of the group Zp and fixed points,? Mat. Zametki,4, 381?386 (1968).
[41] A. S. Mishchenko, ?Bordisms with action of the group Zp and fixed points,? Mat. Sb.,80, No. 3, 307?313 (1969).
[42] S. P. Novikov, ?Homotopic properties of Thom complexes,? Mat. Sb.,57, No. 4, 407?442 (1962).
[43] S. P. Novikov, ?Methods of algebraic topology from the viewpoint of cobordism theory,? Izv. Akad. Nauk SSSR Ser. Mat.,31, No. 4, 855?951 (1967).
[44] S. P. Novikov, ?Adams operators and fixed points,? ibid.,32, 1245?1263 (1968).
[45] N. V. Panov, ?Characteristic numbers in U-theory,? ibid.,35, No. 6, 1356?1376 (1971).
[46] A. A. Peresetskii, ?SU-Cobordisms and formal groups,? Mat. Sb.,88, No. 4, 536?545 (1972).
[47] Yu. B. Rudyak, ?Stable k-theory and bordisms of manifolds with singularities,? Dokl. Akad. Nauk SSSR,216, No. 6, 1222?1225 (1974).
[48] Yu. B. Rudyak, ?Formal groups and bordisms with singularities,? Mat. Sb.,96, No. 4, 523?542 (1975).
[49] B. V. Fedosov, ?The index of an elliptic system on a manifold,? Funktional. Analiz Ego Prilozhen.,4, No. 4, 57?67 (1970).
[50] A. Yankovskii, ?Elements of infinite filtration in general cohomology theories on the category of spectra,? Mat. Zametki,11, No. 6, 699?704 (1972).
[51] J. F. Adams, ?On the groups J(X) IV,? Topology,5, No. 1, 21?71 (1966). · Zbl 0145.19902
[52] J. F. Adams, ?Lectures on generalized cohomology. Category theory, homology theory, and their applications III,? Battelle Inst. Conf. Seattle Wash. 1968, Vol. 3, Springer, Berlin (1969), pp. 1?138.
[53] J. F. Adams, ?Quillen’s work on formal group law and complex cobordism,? Univ. Chicago Lect. Note Ser. (1970).
[54] J. F. Adams and A. Liulevicius, ?The Hurewicz homomorphism for MU and BP.? J. London Math. Soc.,5, No. 3, 539?545 (1972). · Zbl 0243.55006
[55] J. C. Alexander, ?Cobordism Massey products,? Trans. Amer. Math. Soc..166, 197?214 (1972).
[56] J. C. Alexander, ?A family of indecomposable symplectic manifolds,? Amer. J. Math.,94, No. 3, 699?710 (1972). · Zbl 0245.57014
[57] D. W. Anderson and I. M. James, ?Bundles with special structure II,? Proc. London Math. Soc..24, No. 2, 324?330 (1972). · Zbl 0243.55020
[58] D. W. Anderson and I. M. James, ?Bundles with special structure III,? ibid., 331?347 (1972). · Zbl 0243.55021
[59] D. W. Anderson and L. Hodgkin, ?The K-theory of Eilenberg-Mac Lane complexes,? Topology,7, No. 3, 317?329 (1968). · Zbl 0199.26302
[60] Yutaka Ando, ?KSO(X) and KO(X) for a CW-complex X of dimX?7,? Rept. Tokyo Univ. Fish., No. 8, 1?11 (1973).
[61] Shôrô Araki, ?A typical formal group in K-theory,? Proc. Japan. Acad.,49, No. 7, 477?482 (1973). · Zbl 0274.55020
[62] M. F. Atiyah, ?Global theory of elliptic operators,? Proc. Int. Conf. Funct. Anal. and Relat. Topics Tokyo 1969, Tokyo (1970), pp. 21?30.
[63] M. F. Atiyah, ?Elliptic operators and singularities of vector fields,? Actes Congr. Int. Math. 1970, Vol. 2, Paris (1971), pp. 207?209.
[64] M. F. Atiyah and R. Bott, ?A Lefschetz fixed point formula for elliptic complexes I,? Ann. Math.,86, No. 2, 374?407 (1967). · Zbl 0161.43201
[65] M. F. Atiyah and R. Bott, ?Lefschetz fixed point formula for elliptic complexes II. Applications,? ibid.,88, No. 3, 451?491 (1968). · Zbl 0167.21703
[66] M. F. Atiyah and J. Dupont, ?Vector fields with finite singularities,? Acta Math.,128, Nos. 1?2, 1?40 (1972). · Zbl 0233.57010
[67] M. F. Atiyah and F. Hirzebruch, ?Spin-manifolds and group actions,? Essays Topol. and Relat. Topics, Berlin et al. (1970), pp. 18?281.
[68] M. F. Atiyah and G. Segal, ?Equivariant K-theory,? Lect. Notes, Oxford (1965).
[69] M. F. Atiyah and G. Segal, ?Equivariant K-theory and completion,? J. Different. Geom.,3, No. 1, 1?18 (1969). · Zbl 0215.24403
[70] M. F. Atiyah and G. Segal, ?The index of elliptic operators II,? Ann. Math.,87, No. 3, 531?545 (1968). · Zbl 0164.24201
[71] M. F. Atiyah and I. M. Singer, ?The index of elliptic operators I,? ibid., 484?530 (1968). · Zbl 0164.24001
[72] M. F. Atiyah and I. M. Singer, ?The index of elliptic operators III,? ibid., 546?604 (1968). · Zbl 0164.24301
[73] M. F. Atiyah and I. M. Singer, ?The index of elliptic operators IV,? ibid.,93, No. 1, 119?133 (1971). · Zbl 0212.28603
[74] M. F. Atiyah and I. M. Singer, ?The index of elliptic operators V,? ibid., 134?149 (1971).
[75] M. G. Bartolini, ?Immersione di un fibrato in un fibrato,? Rend. Ist. Lombard. Accad. Sci. e Lett.,A105, No. 1, 36?49 (1971).
[76] P. F. Bauem, ?Vector fields and Gauss-Bonnet,? Bull. Amer. Math. Soc.,76, No. 6, 1202?1211 (1970). · Zbl 0203.54102
[77] P. F. Bauem and R. Bott, ?On the zeroes of meromorphic vector-fields,? Essays Topol. and Relat. Topics, Berlin etc. (1970), pp. 29?47.
[78] J. Becker, ?On the existence of Ak-structures on stable vector bundles,? Topology,9, No. 4, 367?384 (1970). · Zbl 0217.49002
[79] J. Becker, ?Vector fields on quotient manifolds of spheres,? Indiana Univ. Math. J.,22, No. 9, 859?871 (1973). · Zbl 0264.57007
[80] R. H. Bowman, ?Sprays on vector bundles,? J. Different. Geom.,5, Nos. 1?2, 75?83 (1971). · Zbl 0212.26501
[81] R. H. Bowman, ?Higher order dissections,? ibid., 169?173 (1971). · Zbl 0212.26502
[82] T. Bröcker and T. Dieck, ?Kobordismentheorie,? Lect. Notes Math., No. 178 (1970).
[83] T. Bröcker and E. Hook, ?Stable equivariant bordism,? Math. Z.,129, No. 3, 269?277 (1972). · Zbl 0236.57020
[84] W. Browder, ?The Kervaire invariant of framed manifolds and its generalization,? Ann. Math.,90, No. 2, 157?186 (1969). · Zbl 0198.28501
[85] E. H. Brown Jr. and F. P. Peterson, ?A spectrum whose Zp cohomology is the algebra of reduced p-powers,? Topology,5, No. 2, 149?154 (1966). · Zbl 0168.44001
[86] P. Cartier, ?Modules associés à un groupe formel commutatif. Courbes typiques,? Compt. Rend. Acad. Sci.,265, No. 4, A129-A132 (1967). · Zbl 0168.27502
[87] A. Chabour, ?Sur la structure de groupe de la K-theorie des espaces lenticulaires,? ibid.,272, No. 7, A462-A464 (1971). · Zbl 0207.53603
[88] J. Cheeger, ?A combinatorial formula for Stiefel-Whitney classes,? Topol. Manifolds, Chicago (1970), pp. 470?471.
[89] J. M. Cohen, ?The Hurewicz homomorphism on MU,? Invent. Math.,10, No. 3, 177?186 (1970). · Zbl 0201.55704
[90] J. M. Cohen, ?Inverse limits of principal fibrations,? Proc. London Math. Soc.,27, No. 1, 178?192 (1973). · Zbl 0264.55009
[91] E. H. Connell, ?Characteristic classes,? Ill. J. Math.,14, No. 3, 496?521 (1970). · Zbl 0222.55024
[92] P. E. Conner and E. E. Floyd, ?Torsion in SU-bordism,? Mem. Amer. Math. Soc.,60 (1966). · Zbl 0138.18504
[93] P. E. Conner and E. E. Floyd, ?Maps of odd period,? Ann. Math., 84, No. 1, 132?156 (1966). · Zbl 0156.22001
[94] P. E. Conner and E. E. Floyd, ?The relation of cobordism to K-theories,? Lect. Notes Math.,28 (1966). · Zbl 0161.42802
[95] P. E. Conner and L. Smith, ?On the complex bordism of finite complexes,? Publs. Math. IHES, No. 37, 117?221 (1969). · Zbl 0192.60201
[96] P. E. Conner and L. Smith, ?On generators for complex bordism modules,? Invent. Math.,10, No. 3, 199?204 (1970). · Zbl 0204.23602
[97] P. E. Conner and L. Smith, ?On the complex bordism of finite complexes II,? J. Diff. Geom.,6, No. 2, 135?174 (1971). · Zbl 0246.55004
[98] P. E. Conner and L. Smith, ?On the complex bordism of complexes with few cells,? J. Math. Kyoto Univ.,11, No. 2, 315?356 (1971). · Zbl 0218.57025
[99] P. E. Conner and L. Smith, ?Homological dimension of complex bordism modules,? Topological Manifolds, Chicago (1970), pp. 472?482.
[100] M. Curtis and G. Mislin, ?H-Spaces which are bundles over S7,? J. Pure Appl. Algebra,1, No. 1, 27?40 (1971). · Zbl 0209.27401
[101] J. Damon, ?The Gysin homomorphism for flag bundles,? Amer. J. Math.,95, No. 3, 643?659 (1973). · Zbl 0278.55013
[102] T. Dieck, ?Steenrod-Operationen in Kobordismen-Theorien,? Math. Z.107, No. 5, 380?401 (1968). · Zbl 0167.51801
[103] T. Dieck, ?Bordism of G-manifolds and integrality theorems,? Topology,9, No. 4, 345?358 (1970). · Zbl 0209.27504
[104] T. Dieck, ?Bemerkungen über Äquivariante Euler-Klassen,? Lect. Notes Math.,298, 152?162 (1972).
[105] T. Dieck, ?Kobordismentheorie klassifizierender Räume und Transformationsgruppen,? Math. Z.,126, No. 1, 31?39 (1972). · Zbl 0227.57017
[106] T. Dieck, ?Periodische Abbildungen unitärer Mannigfaltigkeiten,? ibid., No. 3, 275?295 (1972). · Zbl 0229.57014
[107] T. Dieck, ?Characteristic numbers of G-manifolds I,? Invent. Math.,13, No. 3, 213?224 (1971). · Zbl 0216.45403
[108] T. Dieck, ?Characteristic numbers of G-manifolds II,? J. Pure Appl. Algebra,4, No. 1, 31?39 (1974). · Zbl 0282.57021
[109] J. Dieudonné, ?Groupes de Lie et hyperalgèbres de Lie sur un corps de caracteristique p>0,? Comment. Math. Helv.,28, No. 1, 97?118 (1954). · Zbl 0055.25601
[110] A. Dold, ?Relations between ordinary and extraordinary cohomology,? Coll. Alg. Top. Aarh. Univ.,S, No. 1, 2?9 (1962). · Zbl 0145.20104
[111] B. Drachman, ?A generalisation of the Steenrod classification theorem to H-spaces,? Trans. Amer. Math. Soc.,153, 53?88 (1971). · Zbl 0223.55013
[112] J. Dunau, ?Théorie de De Rham pour un opérateur pseudodifferentiel elliptique,? Compt. Rend. Acad. Soc.,271, No. 11, A501-A503 (1970). · Zbl 0203.45904
[113] J. L. Dupont, ?Symplectic bundles and KR-theory,? Math. Scand.,24, No. 1, 27?30 (1969). · Zbl 0184.48401
[114] J. L. Dupont, ?K-Theory obstructions to the existence of vector fields,? Prepr. Ser. Mat. Inst. Aarhus Univ., No. 48, 24 (1973).
[115] J. L. Dupont and G. Lustig, ?On manifolds satisfying w 1 2 =0,? Topology,10, No. 2, 81?92 (1971). · Zbl 0212.28801
[116] A. L. Edelson, ?Real line bundles on spheres,? Proc. Amer. Math. Soc.,27, No. 3, 579?583 (1971). · Zbl 0207.53504
[117] W. End, ?Über Adams-Operationen I,? Invent. Math.,9, No. 1, 45?60 (1969). · Zbl 0184.27002
[118] E. E., Floyd, ?Stiefel-Whitney numbers of quaternionic and related manifolds,? Trans. Amer. Math. Soc.,155, No. 1, 77?94 (1971). · Zbl 0214.50501
[119] Kenso Fujii, ?On the K-ring of S4n+3/Hm,? Hiroshima Math. J.,3, No. 2, 251?265 (1973). · Zbl 0272.55025
[120] Michikazu Fujii, ?Ring structures of Ki-cohomologies of Dold manifolds,? Osaka J. Math.,6, No. 1, No. 1, 107?115 (1969). · Zbl 0201.25203
[121] Michikazu Fujii and Teruko Yasui, ?KO-Groups of the stunted real projective spaces,? Math. J. Okayama Univ.,16, No. 1, 47?54 (1973). · Zbl 0275.55005
[122] Michikazu Fujii and Teruko Yasui, ?KO-Cohomologies of the Dold manifolds,? ibid., 55?84 (1973). · Zbl 0275.55006
[123] S. Gitler and Luen, Lam Kee ?The K-theory of Stiefel manifolds,? Lect. Notes Math.,168, 35?66 (1970). · Zbl 0216.45002
[124] S. Gitler and R. J. Milgram, ?Unstable divisibility of the Chern character,? Lect. Notes Math.,249, 31?33 (1972). · Zbl 0242.55022
[125] L. Gouyon, ?Une remarque sur le cobordisme unitaire et la K-théorie,? Compt. Rend. Acad. Sci.,274, No. 26, A1892-A1894 (1972). · Zbl 0237.55002
[126] A. Grag and P. Green, ?Sphere transitive structures and the triviality automorphism,? Pacific J. Math.,34, No. 1, 83?96 (1970). · Zbl 0194.22804
[127] P. S. Green and R. A. Holzsager, ?Secondary operations in K-theory and applications to metastable homotopy III,? Ill. J. Math.,16, No. 3, 415?422 (1972). · Zbl 0236.55019
[128] J. Guenot, ?Complexes elliptiques dépendant analytiquement d’un paramètere,? Compt. Rend. Acad. Sci.,274, No. 6, A470-A472 (1972). · Zbl 0229.35021
[129] S. Halperin and D. Toledo, ?Stiefel-Whitney homology classes,? Ann. Math.,96, No. 3, 511?525 (1972). · Zbl 0255.57007
[130] G. C. Hamrick, ?Equivariant K-theory characteristic numbers? (Doct. Diss. -Univ. Va., 1971), Diss. Abstrs. Int.,B32, No. 8, 4726 (1972).
[131] I. Hansen and L. Smith, ?Cohomology operations, the Todd polynomial and the Wu class,? Prepr. Ser. Mat. Inst. Aarhus univ., No. 42, 8 (1973).
[132] B. Harris, ?The K-theory of a class of homogeneous spaces,? Trans. Amer. Math. Soc.,131, No. 2, 323?332 (1968).
[133] B. Harris, ?J-Homomorphisms and cobordism groups,? Invent. Math.,7, No. 4, 313?320 (1969). · Zbl 0176.52604
[134] Akio Hattori, ?Integral characteristic numbers for weakly almost complex manifolds,? Topology,5, No. 3, 259?280 (1966). · Zbl 0146.19401
[135] Akio Hattori, ?Equivariant characteristic numbers and integrality theorem for unitary Tn-manifolds,? Tohoku Math. J.,26, No. 3, 461?482 (1974). · Zbl 0288.57020
[136] Akio Hattori and Hajime Taniguchi, ?Smooth S1-action and bordism,? J. Math. Soc. Jap.24, No. 4, 701?731 (1972). · Zbl 0238.57021
[137] R. P. Held and U. Suter, ?On the unitary K-theory of compact Lie groups with finite fundamental group,? Quart. J. Math.,24, No. 95, 343?356 (1973). · Zbl 0262.55006
[138] P. Hilton, ?On factorization of manifolds,? Lect. Notes Math.,118, 48?57 (1970).
[139] P. Hilton and F. Roitberg, ?Note on principal S3-bundles,? Bull. Amer. Math. Soc.,74, No. 5, 957?959 (1968). · Zbl 0162.27403
[140] P. Hilton and F. Roitberg, ?On principal S3-bundles over spheres,? Ann. Math.,90, No. 1, 91?107 (1969). · Zbl 0159.53903
[141] L. Hodgkin, ?The K-theory of some well-known spaces I. QS0,? Topology,11, No. 4, 371?375 (1972). · Zbl 0246.55003
[142] S. G. Hoggar, ?On KO-theory of Grassmannians,? Quart. J. Math.,20, No. 80, 447?463 (1969). · Zbl 0184.48402
[143] E. C. Hook, ?Equivariant cobordism and duality,? Trans. Amer. Math. Soc.,178, 241?258 (1973). · Zbl 0272.57021
[144] J. R. Hubbuck, ?A note on complex Stiefel manifolds,? J. London Math. Soc.,1, No. 1, 85?89 (1969). · Zbl 0179.51702
[145] D. Husemoller, ?The structure of the Hopf algebra H*(BU) over a Zp-algebra,? Amer. J. Math.,93, No. 2, 329?349 (1971). · Zbl 0238.57024
[146] Koichi Iwata, ?Span of lens spaces,? Proc. Amer. Math. Soc.,26, No. 4, 687?688 (1970). · Zbl 0203.26002
[147] I. M. James, ?Bundles with special structure I,? Ann. Math.,89, No. 2, 369?390 (1970).
[148] I. M. James, ?On the homotopy-symmetry of sphere bundles,? Proc. Camb. Phil. Soc.,69, No. 2, 291?294 (1971). · Zbl 0219.55012
[149] I. M. James, ?Note on Stiefel manifolds I,? Bull. London Math. Soc.,2, No. 2, 199?203 (1970). · Zbl 0203.56304
[150] I. M. James, ?Note on Stiefel manifolds II,? J. London Math. Soc.,4, No. 1, 109?117 (1971). · Zbl 0216.45202
[151] I. M. James, ?On sphere-bundles with certain properties,? Quart. J. Math.,22, No. 87, 353?370 (1971). · Zbl 0217.48902
[152] A. Jankowski, ?Note on the characteristic classes of the elements of the unitary bordism module,? Rocz. Pol. Tow. Mat. Ser. 1,15, 91?102 (1971). · Zbl 0244.57010
[153] A. Jankowski, ?Algebras of the cohomology operations in some cohomology theories,? Rozpr. Mat. No. 110, 49 (1974). · Zbl 0281.55008
[154] Sakio Jimi and Jamio Sugawara, ?Reduced power operations on H*(BU(N), Zp) (p=3),? Mem. Fac. Sci. Kyushu Univ. A,26, No. 2, 285?291 (1972). · Zbl 0246.55011
[155] D. C. Johnson, ?Skeleta of complexes with low MU* protective dimension,? Proc. Amer. Math. Soc.,32, No. 2, 599?604 (1972). · Zbl 0234.55009
[156] D. C. Johnson, ?A Stong-Hattori spectral sequence,? Trans. Amer. Math. Soc.,179, 211?225 (1973). · Zbl 0264.55005
[157] D. C. Johnson, ?An infinite complex and the spectral sequences for complex cobordism and K-theory,? Proc. Amer. Math. Soc.,44, No. 1, 231?234 (1974). · Zbl 0285.55003
[158] D. C. Johnson and L. Smith, ?On the relation of complex cobordism to connective K-theory,? Proc. Camb. Phil. Soc.,70, No. 1, 19?22 (1971). · Zbl 0214.21802
[159] D. C. Johnson and W. S. Wilson, ?Projective dimension and Brown-Peterson homology,? Topology,12, No. 4, 317?353 (1973). · Zbl 0271.55006
[160] Teichi Kabayashi and Masahiro Sugawara, ?K1-Rings of lens spaces In(4),? Hiroshima Math. J.,1, No. 2, 253?271 (1971).
[161] Masayoshi Kamata, ?On the ring structure of U*(BU(1)),? Osaka J. Math.,7, No. 2, 417?422 (1970). · Zbl 0209.54502
[162] Masayoshi Kamata, ?The structure of the bordism group U*(BZp),? ibid., 409?416 (1970).
[163] Masayoshi Kamata, ?Notes on the cobordism group U(L(m)),? ibid.,9, No. 2, 287?292 (1972). · Zbl 0257.55006
[164] Masayoshi Kamata and Haruo Minami, ?Bordism groups of dihedral groups,? J. Math. Soc. Jap.,25, No. 2, 334?341 (1973). · Zbl 0252.55002
[165] M. Karoubi, ?AIgèbres de Clifford opérateurs de Fredholm,? Compt. Rend. Acad. Sci.,267, No. 8, A305-A308 (1968). · Zbl 0172.48602
[166] M. Karoubi, ?Foncteurs dérivés et K-théorie. Catégories filtrées,? ibid., No. 9, A328-A331 (1968).
[167] M. Karoubi, ?Foncteurs dérivés et K-théorie. Caractérisation axiomatique de la K-théorie,? ibid., No. 10, A345-A348 (1968).
[168] M. Karoubi, ?Algébres de Clifford et K-théorie,? Ann. Sci. Ec. Norm. Sup.,1, No. 2, 161?270 (1968). · Zbl 0194.24101
[169] M. Karoubi, ?Sur le ?théorème de Thom? en K-théorie équivariante,? Compt. Rend. Acad. Sci.,268, No. 11, A596-A599 (1969). · Zbl 0172.48603
[170] M. Karoubi, ?Espaces classifiants en K-théorie,? Trans. Amer. Math. Soc.,147, No. 1, 75?115 (1970).
[171] M. Karoubi, ?Algèbres de Clifford et opérateurs de Fredholm,? Lect. Notes Math.,136, 66?106 (1970). · Zbl 0197.19803
[172] M. Karoubi, ?Foncteurs dérivés et K-théorie,? ibid., 107?186 (1970).
[173] M. Karoubi, ?Sur la K-théorie equivariante,? ibid., 187?253 (1970). · Zbl 0197.19902
[174] M. Karoubi, ?Cobordisme et groupes formels (d’après D. Quillen et T. tom Dieck), Lect. Notes Math.,317, 141?165 (1973). · Zbl 0254.57025
[175] M. Karoubi, ?K-théorie équivariante des fibrés en spheres,? Topology,12, No. 3, 275?281 (1973). · Zbl 0259.55002
[176] Tosihihasa Kawaguchi and Masahiro Sugawara, ?K- and KO-rings of the lens space Ln(p2) for odd prima p,? Hiroshima Math. J.,1, No. 2, 273?286 (1971).
[177] Hiroaki Koshikawa, ?A remark on the Steenrod representation of B(ZpxZp),? J. Fac Sci. Hokkaido Univ. Ser. 1, Nos. 1?2, 67?73 (1972).
[178] Yoshimitsu Kudo, ?On vector bundles,? Sci. Repts. Hirosaki Univ.,16, Nos. 1?2, 1?4 (1969). · Zbl 0347.55010
[179] R. Kultze, ?Über die Cohomologie von BSO(2k+1) und Vn,2,? Manuscr. Math.,5, No. 3, 241?249 (1971). · Zbl 0217.48903
[180] Kee Yuen Lam, ?Sectioning vector bundles over real projective spaces,? Quart. J. Math.,23, No. 89, 97?106 (1972). · Zbl 0228.55021
[181] P. S. Landweber, ?Steenrod representability of stable homology,? Proc. Amer. Math. Soc.,18, No. 9, 523?529 (1967). · Zbl 0156.43804
[182] P. S. Landweber, ?Cobordism operations and Hopf algebras,? Trans. Amer. Math. Soc.,129, No. 1, 94?110 (1967). · Zbl 0169.54602
[183] P. S. Landweber, ?On the symplectic bordism groups of the spaces Sp(n), HP(n), and BSp(n),? Mich. Math. J.,15, No. 2, 145?153 (1968). · Zbl 0165.26401
[184] P. S. Landweber, ?The bordism class of a quasi-symplectic manifold,? Proc. Amer. Math. Soc.,19, No. 3, 614?616 (1968). · Zbl 0157.30401
[185] P. S. Landweber, ?On the complex bordism and cobordism of infinite complexes,? Bull. Amer. Math. Soc.,76, No. 3, 650?654 (1970). · Zbl 0195.24901
[186] P. S. Landweber, ?On the complex bordism of Eilenberg-MacLane spaces and connective coverings of BU,? Trans. Amer. Math. Soc.,157, 63?71 (1970?1971). · Zbl 0217.48701
[187] P. S. Landweber, ?Cobordism and classifying spaces,? Proc. Symp. Pure Math., Madison Wis. 1970, Vol. 22, Providence R. I. (1971), pp. 125?129.
[188] P. S. Landweber, ?Elements of infinite filtration in complex cobordism,? Math. Scand.30, No. 2, 223?226 (1972). · Zbl 0242.55006
[189] P. S. Landweber, ?Equivariant bordism and cyclic groups,? Proc. Amer. Math. Soc.,31, No. 2, 564?570 (1972). · Zbl 0232.57023
[190] P. S. Landweber, ?Associated prime ideals and Hopf algebras,? J. Pure Appl. Algebra,3, No. 1, 43?58 (1973). · Zbl 0257.55005
[191] P. S. Landweber, ?Annihilator ideals and primitive elements in complex bordism,? Ill. J. Math.,17, No. 2, 173?284 (1973). · Zbl 0261.55006
[192] P. S. Landweber, ?Unique factorization in graded power series rings,? Proc. Amer. Math. Soc.,42, No. 1, 73?76 (1974). · Zbl 0293.13009
[193] P. S. Landweber, ?On Panov’s theorem,? ibid.,43, No. 1, 209?213 (1974). · Zbl 0286.55007
[194] L. L. Larmore, ?Twisted cohomology theories and the single obstruction to lifting,? Pacific J. Math.,41, No. 3, 755?769 (1972). · Zbl 0237.55004
[195] M. Lazard, ?La non-existence des groupes de Lie formels non abeliens à un paramètre,? Compt. Rend. Acad. Sci.,239, No. 16, 942?945 (1954). · Zbl 0055.25602
[196] M. Lazard, ?Sur les groupes de Lie formels à un paramètre,? Bull. Soc. Math. France,83, No. 3, 251?274 (1955). · Zbl 0068.25703
[197] M. Lazard, ?Lois de groupes et analyseurs,? Ann. Sci. Ec. Norm. Sup.,72, No. 4, 299?400 (1955). · Zbl 0068.02702
[198] M. Lazard, ?Analyseurs,? Boll. Unione Mat. Ital.,9, Suppl. No. 2, 49?59 (1974). · Zbl 0322.14018
[199] C. Lazarov, ?Actions of groups of order pq,? Trans. Amer. Math. Soc.,173, 215?230 (1972). · Zbl 0254.57022
[200] P. Leonard, ?G-Structure on spheres,? Trans. Amer. Math. Soc.,157, 311?327 (1970).
[201] A. Liulevicius, ?On the algebra BP*(BP),? Lect. Notes Math.,249, 47?53 (1972).
[202] J.-L. Loday, ?Structures multiplicatives en K-théorie,? Compt. Rend. Acad. Sci.,274, No. 11, A884-A887 (1972). · Zbl 0228.55005
[203] P. Löffler, ?Characteristic numbers of unitary torus-manifolds,? Bull. Amer. Math. Soc.,79, No. 6, 1262?1263 (1973). · Zbl 0274.57013
[204] P. Löffler, ?Equivariant unitary cobordism and classifying spaces,? Proc. Int. Symp. Topology and Appl. Budva 1972, Beograd (1973), pp. 158?160.
[205] P. Löffler, ?Bordismengruppen unitärer Torusmannigfaltigkeiten,? Manuscr. Math.12, No. 4, 307?327 (1974). · Zbl 0282.57022
[206] Toshimitsu Matsuda, ?On the equivariant K-groups \(K_{U_F (n)}^* (GS_{F^n } ,S_{F^n } )\) and \(K_{SU_F (n)}^* (CS_{F^n } ,S_{F^n } )\) ,? J. Fac. Sci. Shushu Univ.,6, No. 1, 27?33 (1971).
[207] K. H. Mayer, ?Relationen zwischen characteristischen Zahlen,? Lect. Notes Math.,111 (1969). · Zbl 0193.23802
[208] J. F. McClendon, ?Obstruction theory in fiber spaces,? Math. Z.,120, No. 1, 1?17 (1971). · Zbl 0222.55023
[209] M. C. McCord, ?Classifying spaces and infinity symmetric products,? Trans. Amer. Math. Soc.,146, 273?298 (1969). · Zbl 0193.23604
[210] G. Melzi, ?Fasci di fibre, fasci multipli e problemi di geometría differenziable in grande,? Rend. Semin. Mat. Fis. Milano,39, 232?267 (1969). · Zbl 0223.55024
[211] G. Melzi, ?Fasci multipli di fibre,? Rend. 1st. Lombardo. Accad. Sci. Lett.,A104, No. 3, 580?596 (1970). · Zbl 0207.22102
[212] K. R. Meyer. ?On computing the index in three dimensions,? Proc. Amer. Math. Soc.,19, No. 3, 760?763 (1968). · Zbl 0169.25802
[213] Haruo Minami, ?A Künneth formula for equivariant K-theory,? Osaka J. Math.,6, No. 1, 143?146 (1969).
[214] A. S. Mishenko, ?Extraordinary homology theories: bordism and K-theory,? Actes Contr. Int. Math. 1970, Vol. 2, Paris (1971), pp. 113?119.
[215] D. A. Moran, ?Minimal cell coverings of some sphere bundles,? Comment. Math. Univ. Carol.,14, No. 4, 647?650 (1973). · Zbl 0266.55011
[216] Masamitsu Mori, ?Homotopy groups of Stiefel manifolds,? Mem. Fac. Sci. Kyushu Univ.,A27, No. 1, 135?148 (1973). · Zbl 0261.57006
[217] M. S. Morsy, ?Note on K(Qn(C)),? Acta Fac. Rerum Natur. Univ. Comen. Math.,23, 35?39 (1970).
[218] R. E. Mosher, ?Secondary characteristic classes for k-special bundles,? Trans. Amer. Math. Soc.,131, No. 2, 333?344 (1968). · Zbl 0159.53601
[219] Nguyen Van Doanh, ?Calculul unor grupuri K*(S2k-1/G),? Stud. si Cerc. Mat.,26, No. 2, 217?229 (1974).
[220] Nguyen Van Doanh, ?Calculul unor grupuri K*(Srp-1/G),? ibid., 231?255 (1974).
[221] M. Norredine, ?K-Theorie des espaces lenticulaires,? Compt. Rend. Acad. Sci.,272, No. 21, A1363-A1365 (1971). · Zbl 0212.55903
[222] D. O’Neill, ?Pontryagin classes of vector bundles over BSp(n),? Proc. Amer. Math. Soc.,40, No. 1, 315?318 (1973). · Zbl 0263.55016
[223] Hideaki Oshima and Zen-Ichi Yosimura, ?Projective dimension of complex bordism modules of CW-spectra II,? Osaka J. Math.,10, No. 3, 565?570 (1973). · Zbl 0273.55007
[224] E. Ossa, ?Unitary bordism of Abelian groups,? Proc. Amer. Math. Soc.,33, No. 2, 568?571 (1972). · Zbl 0215.52603
[225] R. R. Patterson and R. E. Stong, ?Orientability of bundles,? Duke Math. J.,39, No. 4, 619?622 (1972). · Zbl 0251.55003
[226] H. V. Pittie, ?The additive and multiplicative orders of a complex line bundle,? Proc. Camb. Phil. Soc.,70, No. 3, 395?397 (1971). · Zbl 0224.55009
[227] H. V. Pittie, ?Homogeneous vector bundles on homogeneous spaces,? Topology,11, No. 2, 199?203 (1972). · Zbl 0229.57017
[228] D. Porter, ?Symplectic bordisms, Stiefel-Whitney numbers, and a Novikov resolution,? Pacific J. Math.,35, No. 1, 205?212 (1970). · Zbl 0201.56101
[229] D. Porter, ?Correction to symplectic bordism, Stiefel-Whitney numbers, and a Novikov resolution,? ibid.,43, No. 3, 825 (1972). · Zbl 0249.57011
[230] G. J. Porter, ?Homomorphisms of principal fibrations: applications to classification, induced fibrations, and the extension problem,? Ill. J. Math.,16, No. 1, 41?60 (1972). · Zbl 0228.55018
[231] W. Pulikowski, ?RO(G) Graded G-bordism theory,? Bull. Acad. Pol. Sci. Ser. Math. Astron. Phys.,21, No. 11, 991?995 (1973).
[232] W. Pulikowskii, ?Coefficients of Z2-bordism theory indexed by representations,? ibid., 997?999 (1973).
[233] D. Quillen, ?On the formal group laws of unoriented and complex cobordism theory,? Bull. Amer. Soc.,75, No. 6, 1293?1298 (1969). · Zbl 0199.26705
[234] D. Quillen, ?The Adams conjecture,? Topology,10, No. 1, 67?80 (1971). · Zbl 0219.55013
[235] D. Quillen, ?Elementary proofs of some results of cobordism theory using Steenrod operations,? Adv. Math.,7, 29?56 (1971). · Zbl 0214.50502
[236] N. Ray, ?A note on the symplectic bordism ring,? Bull. London Math. Soc.,3, No. 2, 159?162 (1971). · Zbl 0217.48702
[237] N. Ray, ?Indecomposables in Tors MSp*,? Topology,l0, No. 4, 261?270 (1971). · Zbl 0224.55012
[238] N. Ray, ?The symplectic J-homomorphism,? Invent. Math.,12, No. 3, 237?248 (1971). · Zbl 0211.55603
[239] N. Ray, ?Realizing symplectic bordism classes,? Proc. Camb. Phil. Soc.,71, No. 2, 301?305 (1972). · Zbl 0226.55010
[240] N. Ray, ?Some results in generalized homology, K-theory, and bordism,? ibid., 283?300 (1972). · Zbl 0226.55008
[241] N. Ray, ?The symplectic bordism ring,? ibid., 271?282 (1972). · Zbl 0226.55009
[242] N. Ray, ?Bordism J-homomorphisms,? Ill. J. Math.,18, No. 2, 290?309 (1974). · Zbl 0275.57014
[243] E. Rees, ?Complex bundles with two sections,? Proc. Camb. Math. Soc.,71, No. 3, 457?462 (1972).
[244] C. P. Rourke, ?Representing homology classes,? Bull. London Math. Soc.,5, No. 3, 257?260 (1973). · Zbl 0266.55004
[245] F. W. Roush, ?On the image of symplectic cobordism in unoriented cobordism,? Proc. Amer. Math. Soc.,38, No. 3, 647?652 (1973). · Zbl 0236.57021
[246] A. Roux, ?Application de la suite spectrale de Hodgkin au calcul de la K-théorie de variétés de Stiefel,? Compt. Rend. Acad. Sci.,272, No. 18, A1179-A1181 (1971). · Zbl 0217.48603
[247] C. A. Ruiz, ?The cohomology of the complex projective Stiefel manifold,? Trans. Amer. Math. Soc.,146, 541?547 (1969).
[248] H. Scheerer, ?On principal bundles over spheres,? Indag. Math.,32, No. 4, 353?355 (1970). · Zbl 0206.25403
[249] C. Schochet, ?On the structure of graded formal groups of finite characteristic,? Proc. Camb. Phil. Soc.,73, No. 1, 215?221 (1973). · Zbl 0245.55006
[250] C. Schochet, ?On the bordism ring of complex projective space,? Proc. Amer. Math. Soc.,37, No. 1, 267?270 (1973). · Zbl 0248.57022
[251] C. Schochet, ?Cobordism from an algebraic point of view,? Lect. Notes Ser. Mat. Inst. Aarhus Univ., No. 29 (1971). · Zbl 0222.57025
[252] D. M. Segal, ?Halving the Milnor manifolds and some conjectures of Ray,? Proc. Amer. Math. Soc.,39, No. 3, 625?628 (1973). · Zbl 0268.57017
[253] D. M. Segal, ?Divisibility conditions on characteristic numbers of stable symplectic manifolds,? ibid.,27, No. 2, 411?415 (1971). · Zbl 0207.53804
[254] D. M. Segal, ?On the symplectic cobordism ring,? Comment. Math. Helv.,45, No. 2, 159?169 (1970). · Zbl 0199.26801
[255] G. B. Segal, ?Fredholm complexes,? Quart. J. Math.,81, No. 84, 325?402 (1970). · Zbl 0213.25403
[256] G. B. Segal, ?Equivariant K-theory,? Publ. Math. Inst. Hautes Études Sci., No. 34, 129?151 (1968). · Zbl 0199.26202
[257] Katsuyuki Shibata, ?Oriented and weakly complex bordism of free metacyclic actions,? Osaka J. Math.,11, No. 1, 171?180 (1974). · Zbl 0298.57026
[258] Katsuyuki Shibata, ?Oriented and weakly complex bordism algebra of free periodic maps,? Trans. Amer. Math. Soc.,177, 199?200 (1973). · Zbl 0254.57021
[259] Katsuyuki Shibata, ?Sur les images des générateurs canoniques de ?*(MO) par l’homomorphisme de Hurewicz,? Compt. Rend. Acad. Sci.,A278, No. 5, 327?329 (1974). · Zbl 0294.57019
[260] Katsuyuki Shibata, ?A note on the formal group law of unoriented cobordism theory,? Osaka J. Math.,10, No. 1, 33?42 (1973). · Zbl 0262.57015
[261] Katsuyuki Shibata, ?On Boardman’s generating sets of the unoriented bordism ring,? ibid.,8, No. 2, 219?232 (1971). · Zbl 0231.57021
[262] Weishu Shih and Varma Singh, ?Sur les KO-classes caractéristiques des fibrés réels,? Compt. Rend. Acad. Sci.,273, No. 25, A1212-A1214 (1971). · Zbl 0232.55031
[263] F. Sigrist, ?Détermination des groupes J(CPn) et J(HPn). Applications,? Sympos. Math. Ist. Naz. Alta, Mat. Conv. 11. 1971-5. 1972, Vol. 11, London-New York (1973), pp. 299?304.
[264] F. Sigrist and U. Suter, ?Crosssections of quaternionic Stiefel manifolds,? ibid., (1973), pp. 355?357.
[265] F. Sigrist and U. Suter, ?On symplectic Stiefel manifolds,? Atti Accad. Naz. Lincei. Rend. C1. Sci. F Fis. Mat. e Natur.,52, No. 4, 493?497 (1972). · Zbl 0256.55018
[266] L. Smith, ?On the finite generation of ? * U(X) ,? J. Math. Mech.,18, No. 10, 1017?1024 (1969).
[267] L. Smith, ?On realizing complex bordism modules. Applications to the stable homotopy of spheres,? Amer. J. Math.,92, No. 4, 793?856 (1970). · Zbl 0218.55023
[268] L. Smith, ?An application of complex bordism to the stable homotopy groups of spheres,? Bull. Amer. Math. Soc.,76, No. 3, 601?604 (1970). · Zbl 0194.55404
[269] L. Smith, ?The e-invariant and finite coverings,? Prepr. Ser. Mat. Inst. Aarhus Univ., No. 10, 28 (1973?1974).
[270] L. Smith, ?On the relation of connective K-theory to homology,? Proc. Camb. Phil. Soc.,68, No. 3. 637?639 (1970). · Zbl 0209.54402
[271] L. Smith, ?On ideals in ? * U ,? Pacific J. Math.,37, No. 2, 527?537 (1971). · Zbl 0216.45404
[272] L. Smith, ?A note on annihilator ideals of complex bordism classes,? ibid.,38, No. 2, 551?558 (1971). · Zbl 0225.57017
[273] L. Smith, ?Annihilator ideals of complex bordism classes and Toda’s ?-sequence in the stable homotopy of spheres,? Indiana Univ. Math. J.,20, No. 12, 1119?1123 (1971).
[274] L. Smith, ?On characteristic numbers of almost complex manifolds with framed boundaries,? Topology,10, No. 9, 237?256 (1971). · Zbl 0194.55403
[275] L. Smith, ?On realizing complex bordism modules II. Applications to the stable homotopy groups of spheres,? Amer. J. Math.,93, No. 1, 226?263 (1971). · Zbl 0233.57017
[276] L. Smith, ?On realizing complex bordism modules III,? ibid.,94, No. 3, 875?890 (1972). · Zbl 0285.57023
[277] L. Smith, ?A note on the Stong-Hattori theorem,? Ill. J. Math.,17, No. 2, 285?289 (1973). · Zbl 0267.55005
[278] L. Smith, ?The Todd character and the integrality theorem for the Chern character,? ibid., 301?310 (1973). · Zbl 0267.55007
[279] L. Smith and R. Zahler, ?Detecting stable homotopy classes by primary BP cohomology operations,? Math. Z.,129, No. 2, 137?156 (1972). · Zbl 0274.55003
[280] M.-S. B. Smith and L. Smith, ?On the cohomology Chern classes of the K-theory Chern classes,? Proc. Amer. Math. Soc.,26, No. 1, 209?214 (1970). · Zbl 0202.54205
[281] V. P. Snaith, ?Massey products in K-theory,? Proc. Camb. Phil. Soc.,68, No. 2, 303?320 (1970). · Zbl 0195.24703
[282] V. P. Snaith, ?Massey products in K-theory II,? ibid.,69, No. 2, 259?289 (1971). · Zbl 0206.25201
[283] J. D. Stasheff, ?Sphere bundles over spheres as H-spaces mod p>2,? Lect. Notes Math.,249, 106?110 (1972).
[284] R. E. Stong, ?Relations among characteristic numbers I, II,? Topology,4, No. 3, 267?281 (1965), and5, No. 2, 133?148 (1966). · Zbl 0136.20503
[285] R. E. Stong, ?Some remarks on symplectic cobordism,? Ann. Math.,86, No. 3, 425?433 (1967). · Zbl 0168.44104
[286] R. E. Stong, ?Complex and oriented equivariant bordism,? Topol. Manifolds, Chicago (1970), pp. 291?316.
[287] R. E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, Princeton (1968). · Zbl 0181.26604
[288] D. Sullivan, Geometric Topology, Part I. Localization, Periodicity, and Galois Symmetry; MIT Press (preprint) (1970).
[289] D. Sullivan, ?Genetics of homotopy theory and Adams conjecture,? Ann. Math.,100, No. 1, 1?79 (1974). · Zbl 0355.57007
[290] R. Thom, ?Quelques propriétés globales des varietes différentiables,? Comment. Math. Helv.,28, No. 1, 17?86 (1954). · Zbl 0057.15502
[291] E. Thomas, ?Some remarks on vector fields,? Lect. Notes Math.,196, 107?113 (1971). · Zbl 0218.57013
[292] E. Thomas and R. Zahler, ?Nontriviality of the stable homotopy element ?1,? J. Pure and Appl. Algebra,4, No. 2, 189?203 (1974). · Zbl 0287.55014
[293] Hirosi Toda, ?On unstable homotopy of spheres and classical groups,? Proc. Nat. Acad. Sci. USA,46, No. 8, 1102?1105 (1960). · Zbl 0099.38904
[294] Hirosi Toda, ?On spectra realizing exterior parts of the Steenrod algebra,? Topology,10, No. 1, 53?65 (1971). · Zbl 0223.55029
[295] Hirosi Toda, ?Algebra of stable homotopy of Zp-spaces and applications,? J. Math. Kyoto Univ.,11, No. 2, 197?251 (1971). · Zbl 0228.55015
[296] Hirosi Toda, ?On spectra V(n),? Proc. Symp. Pure Math. Madison Wis. 1970, Vol. 22, Providence R. I. (1971), pp. 273?278.
[297] Fuichi Uchida, ?Bordism algebra of involutions,? Proc. Japan Acad.,46, No. 7, 615?619 (1970). · Zbl 0221.57018
[298] J. W. Vick, ?Pontryagin duality in K-theory,? Proc. Amer. Math. Soc.,24, No. 3, 611?616 (1970). · Zbl 0192.60104
[299] G. Vranceanu, ?Vecteurs tangents aux espaces lenticulaires,? Rev. Roum. Math. Pures et Appl.,17, No. 3, 469?472 (1972). · Zbl 0241.57009
[300] S. Weingreen, ?On the incompressibility of certain maps,? Ann. Math.,93, No. 3, 476?485 (1971). · Zbl 0214.49904
[301] P. W. West, ?Uniqueness of multiplicative structure in complex K-theory,? J. Math. Mech.,19, No. 10, 911?922 (1970). · Zbl 0193.52103
[302] E. R. Wheeler, ?Localizing equivariant bordism,? Proc. Amer. Math. Soc.,44, No. 2, 485?491 (1974). · Zbl 0272.55009
[303] C. Wilkerson, ?K-Theory operations in mod p loop spaces,? Math. Z.,132, No. 1, 29?44 (1973). · Zbl 0249.55017
[304] F. Wilson and J. Wesley, ?Some examples of vector fields on the 3-sphere,? Ann. Inst. Fourier,120, No. 2, 1?20 (1970). · Zbl 0195.25403
[305] G. Wilson, ?K-Theory invariants for unitary G -bordism,? Quart. J. Math.,24, No. 96, 499?526 (1973). · Zbl 0269.55004
[306] G. Wolff, ?Der Einfluss von K*(-) auf U*(-),? Manuscr. Math.,l0, No. 2, 141?161 (1973). · Zbl 0263.55006
[307] U. Würgler, ?Riemann-Roch- und Kobordismen,? Comment. Math. Helv.,46, No. 4, 414?424 (1971). · Zbl 0228.55007
[308] U. Würgler, ?Uber Kohomologietheorien mit formaler Gruppe der Charakteristik p,? ibid.,48, No. 4, 531?536 (1973). · Zbl 0267.55008
[309] U. Würgler, ?Eine Bemerkung über R-orientierte Kohomologietheorien,? Arch. Math.,24, 422?426 (1973). · Zbl 0275.55008
[310] U. Würgler, ?Cohomologie et groupes formels,? Compt. Rend. Acad. Sci.,A278, No. 15, 981?983 (1974). · Zbl 0288.55006
[311] Tsutomu Yasui, ?On the cohomology of certain quotient manifolds of the real Stiefel manifolds and their applications,? J. Sci. Hiroshima Univ. Ser. A1,34, No. 2, 313?338 (1970). · Zbl 0214.22701
[312] Toshio Yoshida, ?Note on the span of certain manifolds,? ibid., No. 1, 13?15 (1970). · Zbl 0199.26902
[313] Zen-ichi Yoshimura, ?On cohomology theories of infinite CW-complexes I,? Publ. Res. Inst. Math. Sci.,8, No. 2, 295?310 (1972). · Zbl 0268.55003
[314] Zen-ichi Yoshimura, ?Projective dimension of complex bordism modules of CW-spectra I,? Osaka J. Math.,10, No. 3, 545?564 (1973). · Zbl 0273.55006
[315] Zen-ichi Yoshimura, ?On cohomology theories of infinite CW-complexes II,? Publ. Res. Inst. Math. Sci.,8, No. 3, 483?508 (1973). · Zbl 0268.55004
[316] A. Zabrodsky, ?On the homotopy-typebundles of principal classical group over spheres,? Isr. J. Math.,11, No. 3, 315?325 (1972). · Zbl 0235.55011
[317] R. Zahler, ?The Adams-Novikov spectral sequence for the spheres,? Bull. Amer. Math. Soc.,77, No. 1, 169?174 (1971). · Zbl 0206.25202
[318] R. Zahler, ?Detecting stable homotopy with secondary cobordism operations I,? Quart. J. Math.,25, No. 98, 213?226 (1974). · Zbl 0286.55013
[319] P. Zvengrowski, ?Skew linear vector fields on spheres,? J. London Math. Soc.,3, No. 4, 625?632 (1971). · Zbl 0214.50402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.