×

An equilibrium finite element method for fourth order elliptic equations with variable coefficients. (English) Zbl 0697.65082

The present work is devoted to the fourth order Dirichlet problem with variable or constant coefficients on a convex polygon. It follows the lines developed by Fraeijs de Veubeke with regard to the equilibrium finite element method. For bending problems of plates, the method thus developed gives a simultaneous approximation to displacement and bending and twisting moment tensor.
The paper includes a result stating that a certain space of functionals, which is known to be unisolvent with respect to the space of symmetric polynomials of degree less or equal than 3, is not unisolvent when the degree is greater or equal than 6, leaving thus open the question with respect to degrees 4 and 5. The closing sections deal with error estimates for the equilibrium finite element solution and illustrative examples of the method.
Reviewer: J.P.Milaszewicz

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J40 Boundary value problems for higher-order elliptic equations
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balasundaram, S.; Bhattacharyya, P. K., A mized finite element method for the Dirichlet problem of fourth order elliptic operators with variable coefficients, (4th Int. Symp. Finite Element Methods in Flow Problems. 4th Int. Symp. Finite Element Methods in Flow Problems, Tokyo (July 1982)) · Zbl 0508.76006
[2] Balasundaram, S.; Bhattacharyya, P. K., A mixed finite element method fourth order elliptic partial differential equations, Z. angew. Math. Mech., Vol. 66, No. 10, 489-499 (1986) · Zbl 0616.73064
[3] Balasundaram, S.; Bhattacharyya, P. K., A mixed finite element method for the Dirichlet problem of fourth order elliptic equations with variable coefficients, (Int. Conf. Finite Methods. Int. Conf. Finite Methods, Shanghai (August 1982)) · Zbl 0508.76006
[4] Balasundaram, S.; Bhattacharyya, P. K., A mixed finite element method for fourth order elliptic equations with variable coefficients, Comput. Math. Applic., 10, 245-256 (1984) · Zbl 0553.65080
[5] S. Balasundaram and P. K. Bhattacharyya, A mixed finite element method ffor fourth order elliptic equations with var variable coefficients. Unpublished.; S. Balasundaram and P. K. Bhattacharyya, A mixed finite element method ffor fourth order elliptic equations with var variable coefficients. Unpublished. · Zbl 0553.65080
[6] Babuska, I.; Osborn, J.; Pitkaranta, J., Analysis of mixed methods using mesh dependent norms, Math. Comput., 35, 1039-1062 (1980) · Zbl 0472.65083
[7] Brezzi, F.; Raviart, P. A., Mixed finite element methods for fourth order elliptic equations, (Miller, J., Topics in Numerical Analysis, Vol. 3 (1978), Academic Press: Academic Press New York) · Zbl 0434.65085
[8] Falk, R. S.; Osborn, J. E., Error estimates for mixed methods, R.A.I.R.O. Analyse numérique, 14, 3, 249-277 (1980) · Zbl 0467.65062
[9] Hellan, K., Analysis of elastic plates in flexure by a simplified finite element method, Acta polytech. scand. Civil Engng. Ser., 46 (1967) · Zbl 0237.73046
[10] Hermann, L., Finite element bending analysis for plates, J. Engng. Mech. Div. ASCE EM 5, 93, 49-83 (1967)
[11] Johnson, C., On the convergence of a mixed finite element method for plate bending problems, Numer. Math., 21, 43-62 (1973) · Zbl 0264.65070
[12] Oden, J. T.; Carey, G. F., Finite Elements—Mathematical Aspects, Vol. 4 (1983), The Texas Finite Element Series: The Texas Finite Element Series Prentice Hall, New Jersey
[13] Raviart, P. A., Mixed and equilibrium methods for 4th order problems. Rapport de Recherche (1976), Laboratoire d’Analyse Numérique, Université de Paris VI
[14] de Veubeke, B. Fraeijs, Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress Analysis (1974), Wiley: Wiley New York), Chapter 9 · Zbl 0245.73031
[15] de Veubeke, B. Fraeijs; Sander, G., An equilibrium model for plate bending, Int. J. Solids Struct., 4, 447-468 (1968)
[16] Brezi, F.; Marini, L. D.; Quarteroni, A.; Raviart, P. A., On an equilibrium finite element method for plate bending problems, Publ. No. 169, L.A.N. of C.N.R., Pavia (1979)
[17] Bhattacharyya, P. K.; Gopalsamy, S., An equilibrium finite element method for fourth order elliptic equations with variable coefficients, (Research Report No. 315 (1984), Institut National de Recherche en Informatique et en Automatique Roequencourt: Institut National de Recherche en Informatique et en Automatique Roequencourt France) · Zbl 0697.65082
[18] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[19] Lions, J. L., Problème aux limites dans les équations derivées partielles (1965), Les Presses de l’Université de Montréal: Les Presses de l’Université de Montréal Montréal · Zbl 0143.14003
[20] Ciarlet, P. G., The Finite Element of Method for Elliptic Problems (1977), North Holland: North Holland Amsterdam
[21] Balasundaram, S.; Bhattacharyya, P. K., On existence of solution of the Dirichlet problem of fourth order partial differential equations with variable coefficients, Q. Jl appl. Math., 39, 311-317 (1983) · Zbl 0533.35024
[22] Kondratev, V. A., Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Mosk. Mat. Obsc., 16, 209-292 (1967)
[23] Lekhnitskii, S. G., Anisotropic Plates (1968), Gordon & Breach: Gordon & Breach New York · Zbl 0104.19101
[24] Szilard, R., Theory and Analysis of Plates (1974), Prentice Hall: Prentice Hall New Jersey
[25] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and Shells (1976), McGraw-Hill: McGraw-Hill New York · Zbl 0114.40801
[26] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill New York · Zbl 0435.73072
[27] Fortin, M., Analysis of the convergence of mixed finite element methods, R.A.I.R.O., 11, 341-354 (1977) · Zbl 0373.65055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.