×

Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing. (English) Zbl 1349.76182

Summary: Although viscous solid-liquid mixing plays a key role in the industry, the vast majority of the literature on the mixing of suspensions is centered around the turbulent regime of operation. However, the laminar and transitional regimes face considerable challenges. In particular, it is important to know the minimum impeller speed (\(N_{j s}\)) that guarantees the suspension of all particles. In addition, local information on the flow patterns is necessary to evaluate the quality of mixing and identify the presence of dead zones. Multiphase computational fluid dynamics (CFD) is a powerful tool that can be used to gain insight into local and macroscopic properties of mixing processes. Among the variety of numerical models available in the literature, which are reviewed in this work, unresolved CFD-DEM, which combines CFD for the fluid phase with the discrete element method (DEM) for the solid particles, is an interesting approach due to its accurate prediction of the granular dynamics and its capability to simulate large amounts of particles. In this work, the unresolved CFD-DEM method is extended to viscous solid-liquid flows. Different solid-liquid momentum coupling strategies, along with their stability criteria, are investigated and their accuracies are compared. Furthermore, it is shown that an additional sub-grid viscosity model is necessary to ensure the correct rheology of the suspensions. The proposed model is used to study solid-liquid mixing in a stirred tank equipped with a pitched blade turbine. It is validated qualitatively by comparing the particle distribution against experimental observations, and quantitatively by compairing the fraction of suspended solids with results obtained via the pressure gauge technique.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Paul, E. L.; Atiemo-Obeng, V. A.; Kresta, S. M., Handbook of Industrial Mixing - Science and Practice (2004)
[2] Zwietering, T. N., Suspending of solid particles in liquid by agitators, Chem. Eng. Sci., 8, 3, 244-253 (1958)
[3] Nienow, A. W., Suspension of solid particles in turbine agitated baffled vessels, Chem. Eng. Sci., 23, 12, 1453-1459 (1968)
[4] Narayanan, S.; Bhatia, V. K.; Guha, D. K.; Rao, M. N., Suspension of solids by mechanical agitation, Chem. Eng. Sci., 24, 2, 223-230 (1969)
[5] Baldi, G.; Conti, R.; Alaria, E., Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci., 33, 1, 21-25 (1978)
[6] Mersmann, A.; Werner, F.; Maurer, S.; Bartosch, K., Theoretical prediction of the minimum stirrer speed in mechanically agitated suspensions, Chem. Eng. Process., 37, 6, 503-510 (1998)
[7] Derksen, J. J., Numerical simulation of solids suspension in a stirred tank, AIChE J., 49, 11, 2700-2714 (2003)
[8] Tamburini, A.; Cipollina, A.; Micale, G.; Ciofalo, M.; Brucato, A., Dense solid-liquid off-bottom suspension dynamics: simulation and experiment, Chem. Eng. Res. Des., 87, 4, 587-597 (2009)
[9] Tamburini, A.; Cipollina, A.; Micale, G.; Brucato, A.; Ciofalo, M., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of the minimum impeller speed for complete suspension, Chem. Eng. J., 193, 234-255 (2012) · Zbl 06942783
[10] Montante, G.; Magelli, F., Mixed solids distribution in stirred vessels: experiments and computational fluid dynamics simulations, Ind. Eng. Chem. Res., 46, 9, 2885-2891 (2007)
[11] Kee, N. C.S.; Tan, R. B.H., CFD simulation of solids suspension in mixing vessels, Can. J. Chem. Eng., 80, 4, 721-726 (2002)
[12] Wang, F.; Mao, Z. S.; Shen, X. Q., Numerical study of solid-liquid two-phase flow in stirred tanks with Rushton impeller, (II): prediction of critical impeller speed, Chin. J. Chem. Eng., 12, 5, 610-614 (2004)
[13] Hosseini, S.; Patel, D.; Ein-Mozaffari, F.; Mehrvar, M., Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling, Ind. Eng. Chem. Res., 49, 9, 4426-4435 (2010)
[14] Lassaigne, M.; Blais, B.; Fradette, L.; Bertrand, F., Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank, Chem. Eng. Res. Des., 108, 55-58 (2016)
[15] Kneule, F., Die Prüfung von Rührern durch Löslichkeitsbestimmung, Chem. Ing. Tech., 28, 3, 221-225 (1956)
[16] Ibrahim, S. B.; Nienow, A. W., The effect of viscosity on mixing pattern and solid suspension in stirred vessels, (Eighth European Conference on Mixing, vol. 136 (1994)), 25-32
[17] Ibrahim, S.; Nienow, A. W., Comparing impeller performance for solid-suspension in the transitional flow regime with Newtonian fluids, Chem. Eng. Res. Des., 77, 8, 721-727 (1999)
[18] Ayranci, I.; Kresta, S. M., Critical analysis of Zwietering correlation for solids suspension in stirred tanks, Chem. Eng. Res. Des., 92, 3, 413-422 (2014)
[19] Kasat, G. R.; Pandit, A. B., Review on mixing characteristics in solid-liquid and solid-liquid-gas reactor vessels, Can. J. Chem. Eng., 83, 4, 618-643 (2005)
[20] Jafari, R.; Tanguy, P. A.; Chaouki, J., Experimental investigation on solid dispersion, power consumption and scale-up in moderate to dense solid-liquid suspensions, Chem. Eng. Res. Des., 90, 2, 201-212 (2012)
[21] Brucato, A.; Micale, G.; Rizzuti, L., Determination of the amount of unsuspended solid particles inside stirred tanks by means of pressure measurements, Récent. Prog. En Génie Procédés, 11, 3-10 (1997)
[22] Micale, G.; Grisafi, F.; Brucato, A., Assessment of particle suspension conditions in stirred vessels by means of pressure gauge technique, Chem. Eng. Res. Des., 80, 8, 893-902 (2002)
[23] Tsuji, Y., Multi-scale modeling of dense phase gas-particle flow, Chem. Eng. Sci., 62, 13, 3410-3418 (2007)
[24] Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B., Discrete particle simulation of particulate systems: theoretical developments, Chem. Eng. Sci., 62, 13, 3378-3396 (2007)
[25] Bertrand, F.; Leclaire, L. A.; Levecque, G., DEM-based models for the mixing of granular materials, Chem. Eng. Sci., 60, 8-9, 2517-2531 (2005)
[26] Derksen, J. J., Highly resolved simulations of solids suspension in a small mixing tank, AIChE J., 58, 10, 3266-3278 (2012)
[27] ten Cate, A.; Nieuwstad, C. H.; Derksen, J. J.; Van den Akker, H. E.A., Particle imaging velocimetry experiments and lattice Boltzmann simulations on a single sphere settling under gravity, Phys. Fluids, 14, 11, 4012-4025 (2002) · Zbl 1185.76073
[28] Hager, A.; Kloss, C.; Goniva, C., Towards an efficient immersed boundary method within an open source framework, (Proc. of 12th International Conference on Multiphase Flow in Industrial Plants. Proc. of 12th International Conference on Multiphase Flow in Industrial Plants, Ischia (Napoli), Italy (2011))
[29] Gidaspow, D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (1994), Academic Press · Zbl 0789.76001
[30] Crowe, C.; Schwartzkopf, J. D.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles Flows (2012), CRC Press
[31] Prosperetti, A.; Tryggvason, G., Computational Methods For Multiphase Flow (2007), Cambridge University Press
[32] Ishii, M.; Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow (2011), Springer: Springer New York · Zbl 1209.76001
[33] Micale, G.; Montante, G.; Grisafi, F.; Brucato, A.; Godfrey, J., CFD simulation of particle distribution in stirred vessels, Chem. Eng. Res. Des., 78, A3, 435-444 (2000)
[34] Ljungqvist, M.; Rasmuson, A., Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des., 79, A5, 533-546 (2001)
[35] Micale, G.; Grisafi, F.; Rizzuti, L.; Brucato, A., CFD simulation of particle suspension height in stirred vessels, Chem. Eng. Res. Des., 82, A9, 1204-1213 (2004)
[36] Montante, G.; Magelli, F., Modelling of solids distribution in stirred tanks: analysis of simulation strategies and comparison with experimental data, Int. J. Comput. Fluid Dyn., 19, 3, 253-262 (2005) · Zbl 1184.76891
[37] Ochieng, A.; Lewis, A. E., CFD simulation of solids off-bottom suspension and cloud height, Hydrometallurgy, 82, 1-2, 1-12 (2006)
[38] Kasat, G. R.; Khopkar, A. R.; Ranade, V. V.; Pandita, A. B., CFD simulation of liquid-phase mixing in solid-liquid stirred reactor, Chem. Eng. Sci., 63, 15, 3877-3885 (2008)
[39] Tamburini, A.; Cipollina, A.; Micale, G., CFD simulation of solid-liquid suspensions in baffled stirred vessels below complete suspension speed, (10th International Conference on Chemical and Process Engineering. 10th International Conference on Chemical and Process Engineering, ICHEAP-10, vol. 24 (2011)), 1435-1440
[40] Tamburini, A.; Cipollina, A.; Micale, G.; Brucato, A.; Ciofalo, M., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of suspension curves, Chem. Eng. J., 178, 324-341 (2011)
[41] Tamburini, A.; Brucato, A.; Cipollina, A.; Micale, G.; Ciofalo, M., CFD predictions of sufficient suspension conditions in solid-liquid agitated tanks, Int. J. Nonlinear Sci. Numer. Simul., 13, 6, 427-443 (2012) · Zbl 06942783
[42] Tamburini, A.; Cipollina, A.; Micale, G.; Brucato, A.; Ciofalo, M., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution, Chem. Eng. J., 223, 875-890 (2013)
[43] Lettieri, P.; Cammarata, L.; Micale, G.; Yates, J., Computational fluid-dynamics simulations of gas fluidized beds using different Eulerian modelling approaches, Int. J. Chem. React. Eng., 1, 1-21 (2003)
[44] Goldhirsch, I., Introduction to granular temperature, Powder Technol., 182, 2, 130-136 (2008)
[45] Chen, X.; Wang, J., A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows, Powder Technol., 254, 94-102 (2014)
[46] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge University Press
[47] Zhou, Z. Y.; Kuang, S. B.; Chu, K. W.; Yu, A. B., Discrete particle simulation of particle-fluid flow: model formulations and their applicability, J. Fluid Mech., 661, 482-510 (2010) · Zbl 1205.76278
[48] Pepiot, P.; Desjardins, O., Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler-Lagrange approach, Powder Technol., 220, 104-121 (2012)
[49] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J. Comput. Phys., 238, 1-31 (2013) · Zbl 1286.76142
[50] Ayranci, I.; Kresta, S. M.; Derksen, J. J., Experiments and simulations on bidisperse solids suspension in a mixing tank, Chem. Eng. Technol., 36, 11, 1957-1967 (2013)
[51] Snider, D. M., An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys., 170, 2, 523-549 (2001) · Zbl 1051.76054
[52] CFDEM, CFDEM-Open source CFD, DEM and CFD-DEM (2015)
[53] Goniva, C.; Kloss, C.; Deen, N. G.; Kuipers, J. A.M.; Pirker, S., Influence of rolling friction on single spout fluidized bed simulation, Particuology, 10, 5, 582-591 (2012)
[54] OpenCFD, OpenFOAM - the open source CFD toolbox (2014)
[55] LIGGGHTS, LAMMPS improved for general granular and granular heat transfer simulations (2015)
[56] Kloss, C.; Goniva, C., LIGGGHTS - Open Source Discrete Element Simulations of Granular Materials Based on Lammps, 781-788 (2011), John Wiley & Sons, Inc., TMS
[57] Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B., Discrete particle simulation of particulate systems: a review of major applications and findings, Chem. Eng. Sci., 63, 23, 5728-5770 (2008)
[58] Tsuji, Y.; Tanaka, T.; Ishida, T., Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71, 3, 239-250 (1992)
[59] Johnson, K., Normal contact of elastic solids: Hertz theory, (Contact Mechanics (1985)), 84-106
[60] Hertz, H., Über die Berühung fester elasticher Körpe, J. Reine Angew. Math., 156-171 (1982)
[61] Mindlin, R.; Deresiewicz, H., Elastic spheres in contact under varying oblique forces, J. Appl. Mech. (1953) · Zbl 0051.41202
[62] Mindlin, R., Compliance of elastic bodies in contact, J. Appl. Mech. (1949) · Zbl 0034.26602
[63] Gondret, P.; Hallouin, E.; Lance, M.; Petit, L., Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing, Phys. Fluids, 11, 9, 2803-2805 (1999) · Zbl 1149.76384
[64] Di Renzo, A.; Di Maio, F. P., Homogeneous and bubbling fluidization regimes in DEM-CFD simulations: hydrodynamic stability of gas and liquid fluidized beds, Chem. Eng. Sci., 62, 1-2, 116-130 (2007)
[65] Di Renzo, A.; Cello, F.; Di Maio, F. P., Simulation of the layer inversion phenomenon in binary liquid-fluidized beds by DEM-CFD with a drag law for polydisperse systems, Chem. Eng. Sci., 66, 13, 2945-2958 (2011)
[66] Shao, T.; Hu, Y.; Wang, W.; Jin, Y.; Cheng, Y., Simulation of solid suspension in a stirred tank using CFD-DEM coupled approach, Chin. J. Chem. Eng., 21, 10, 1069-1081 (2013)
[67] Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65 (1986) · Zbl 0619.76024
[68] Blais, B.; Bertrand, F., On the use of the method of manufactured solutions for the verification of CFD codes for the volume-averaged Navier-Stokes equations, Comput. Fluids, 114, 121-129 (2015) · Zbl 1390.76666
[69] Rong, L. W.; Dong, K. J.; Yu, A. B., Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: effect of porosity, Chem. Eng. Sci., 99, 44-58 (2013)
[70] Marshall, J.; Sala, K., Comparison of methods for computing the concentration field of a particulate flow, Int. J. Multiph. Flow, 56, 4-14 (2013)
[71] Pirker, S.; Kahrimanovic, D.; Goniva, C., Improving the applicability of discrete phase simulations by smoothening their exchange fields, Appl. Math. Model., 35, 5, 2479-2488 (2011)
[72] Blais, B.; Lassaigne, M.; Goniva, C.; Fradette, L.; Bertrand, F., A semi-implicit immersed boundary method and its application to viscous mixing, Comput. Chem. Eng., 85, 136-146 (2016)
[73] Ferziger, J. H.; Perić, M., Computational Methods for Fluid Dynamics, vol. 3 (1996), Springer: Springer Berlin · Zbl 0869.76003
[74] Chen, X.; Zhong, W.; Zhou, X.; Jin, B.; Sun, B., CFD-DEM simulation of particle transport and deposition in pulmonary airway, Powder Technol., 228, 309-318 (2012)
[75] Hobbs, A., Simulation of an aggregate dryer using coupled CFD and DEM methods, Int. J. Comput. Fluid Dyn., 23, 2, 199-207 (2009) · Zbl 1184.76896
[76] Xu, Y.; Kafui, K.; Thornton, C.; Lian, G., Effects of material properties on granular flow in a silo using DEM simulation, Part. Sci. Technol., 20, 2, 109-124 (2002)
[77] Ren, B.; Zhong, W.; Chen, Y.; Chen, X.; Jin, B.; Yuan, Z.; Lu, Y., CFD-DEM simulation of spouting of corn-shaped particles, Particuology, 10, 5, 562-572 (2012)
[78] Mishra, B. K., A review of computer simulation of tumbling mills by the discrete element method, part I: contact mechanics, Int. J. Miner. Process., 71, 1-4, 73-93 (2003)
[79] Tavarez, F. A.; Plesha, M. E., Discrete element method for modelling solid and particulate materials, Int. J. Numer. Methods Eng., 70, 4, 379-404 (2007) · Zbl 1194.74539
[80] Iinoya, K.; Gotoh, K.; Higashitani, K., Powder Technology Handbook (1991), Marcel Dekker
[81] Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S., Models, algorithms and validation for open source DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 12, 2, 140-152 (2012)
[82] Goniva, C.; Kloss, C.; Hager, A.; Pirker, S., An open source CFD-DEM perspective, (Proceedings of OpenFOAM Workshop. Proceedings of OpenFOAM Workshop, Göteborg (2010)), 22-24
[83] Peker, S.; Helvaci, S., Solid-Liquid Two Phase Flow (2011), Elsevier Science
[84] Mewis, J.; Wagner, N. J., Colloidal Suspension Rheology (2012), Cambridge University Press
[85] Batchelor, G.; Green, J., The determination of the bulk stress in a suspension of spherical particles to order \(c^2\), J. Fluid Mech., 56, 03, 401-427 (1972) · Zbl 0246.76108
[86] Krieger, I. M.; Dougherty, T. J., A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. (1957-1977), 3, 1, 137-152 (1959) · Zbl 0100.21502
[87] Smagorinsky, J., General circulation experiments with the primitive equations, I: the basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[88] Sharma, R. N.; Shaikh, A. A., Solids suspension in stirred tanks with pitched blade turbines, Chem. Eng. Sci., 58, 10, 2123-2140 (2003)
[89] Brucato, A.; Cipollina, A.; Micale, G.; Scargiali, F.; Tamburini, A., Particle suspension in top-covered unbaffled tanks, Chem. Eng. Sci., 65, 10, 3001-3008 (2010)
[90] Garg, R.; Galvin, J.; Li, T.; Pannala, S., Open-source MFIX-DEM software for gas-solids flows, part I: verification studies, Powder Technol., 220, 122-137 (2012)
[91] Lamberto, D.; Alvarez, M.; Muzzio, F., Experimental and computational investigation of the laminar flow structure in a stirred tank, Chem. Eng. Sci., 54, 7, 919-942 (1999)
[92] Cabaret, F.; Fradette, L.; Tanguy, P. A., New turbine impellers for viscous mixing, Chem. Eng. Technol., 31, 12, 1806-1815 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.