×

The pressure moments for two rigid spheres in low-Reynolds-number flow. (English) Zbl 0797.76015

Summary: The pressure moment of a rigid particle is defined to be the trace of the first moment of the surface stress acting on the particle. A Faxén law for the pressure moment of one spherical particle in a general low- Reynolds-number flow is found in terms of the ambient pressure, and the pressure moments of two rigid spheres immersed in a linear ambient flow are calculated using multipole expansions and lubrication theory. The results are expressed in terms of resistance functions, following the practice established in other interaction studies. The osmotic pressure in a dilute colloidal suspension at small Péclet number is then calculated, to second order in particle volume fraction, using these resistance functions. In a second application of the pressure moment, the suspension or particle-phase pressure, used in two-phase flow modeling, is calculated using Stokesian dynamics, and results for the suspension pressure for a sheared cubic lattice are reported.

MSC:

76D08 Lubrication theory
76D07 Stokes and related (Oseen, etc.) flows
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.464105 · doi:10.1063/1.464105
[2] DOI: 10.1017/S002211208800206X · Zbl 0648.76028 · doi:10.1017/S002211208800206X
[3] DOI: 10.1063/1.857698 · Zbl 0709.76118 · doi:10.1063/1.857698
[4] DOI: 10.1146/annurev.fl.20.010188.000551 · doi:10.1146/annurev.fl.20.010188.000551
[5] DOI: 10.1017/S0022112084000355 · Zbl 0545.76037 · doi:10.1017/S0022112084000355
[6] DOI: 10.1063/1.858494 · doi:10.1063/1.858494
[7] Jeffrey D. J., Physicochem. Hydrodyn. 10 pp 461– (1988)
[8] DOI: 10.1063/1.857497 · Zbl 0683.76034 · doi:10.1063/1.857497
[9] DOI: 10.1017/S0022112077001062 · doi:10.1017/S0022112077001062
[10] DOI: 10.1017/S0022112072002435 · Zbl 0246.76108 · doi:10.1017/S0022112072002435
[11] DOI: 10.1063/1.865384 · Zbl 0574.76106 · doi:10.1063/1.865384
[12] DOI: 10.1017/S0022112084001105 · Zbl 0595.76104 · doi:10.1017/S0022112084001105
[13] O’Brien R. W., J. Fluid Mech. 139 pp 261– (1979)
[14] DOI: 10.1063/1.451199 · doi:10.1063/1.451199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.