×

On the uniform paracompactness. (English) Zbl 0566.54013

A uniform space is said to be uniformly \(\kappa\)-paracompact, \(\kappa\) a cardinal \(\geq \omega\), if every directed open cover of cardinality \(\leq \kappa\) is uniform. Various characterizations of (normal) uniformly \(\kappa\)-paracompact spaces are obtained which are the uniform analogues of well-known results on \(\kappa\)-paracompact topological spaces.
Reviewer: H.Brandenburg

MSC:

54E15 Uniform structures and generalizations
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] H. Corson , The determination of paracompactness by uniformities , Amer. J. Math. , 80 ( 1958 ), pp. 185 - 190 . MR 94780 | Zbl 0080.15803 · Zbl 0080.15803
[2] C.H. Dowker , On countably paracompact spaces , Canad. J. of Math. , 3 ( 1951 ), pp. 219 - 224 . MR 43446 | Zbl 0042.41007 · Zbl 0042.41007
[3] J. Dugundij : Topology , Allyn and Bacon, Inc. ( 1966 ). MR 193606 | Zbl 0397.54003 · Zbl 0397.54003
[4] J. Fried - Z. Frolik , A characterization of uniform paracompactness ( 1982 ), to appear. MR 715882 | Zbl 0542.54024 · Zbl 0542.54024
[5] A. Hayes , Uniformities with totally ordered basis have paracompact topologies , Proc. Cambr. Phil. Soc. , 74 ( 1973 ), pp. 67 - 68 . MR 315664 | Zbl 0268.54027 · Zbl 0268.54027
[6] A. Hohti , On uniform paracompactness , Ann. Acad. Sc. Fenn ., ser. A , Math. Diss., 36 ( 1981 ). MR 625526 | Zbl 0502.54021 · Zbl 0502.54021
[7] A. Hohti , A theorem on uniform paracompactness ( 1981 ), to appear. MR 625526 | Zbl 0491.54023 · Zbl 0491.54023
[8] J.R. Isbell , Uniform spaces, Math. Surveys n. 12 , Amer. Math. Soc. , Providence, Rhod Island ( 1964 ). MR 170323 | Zbl 0124.15601 · Zbl 0124.15601
[9] A. Kucia , On coverings of a uniformity , Coll. Math. , 27 ( 1973 ), pp. 73 - 74 . MR 362237 | Zbl 0255.54021 · Zbl 0255.54021
[10] K. Morita , Paracompactness and product spaces , Fund. Math. , 50 ( 1962 ), pp. 223 - 236 . Article | MR 132525 | Zbl 0099.17401 · Zbl 0099.17401
[11] K. Morita , Note on paracompactness , Proc. Jap. Acad. 37 ( 1961 ), pp. 1 - 3 . MR 140078 | Zbl 0099.17402 · Zbl 0099.17402
[12] K. Morita , Cech cohomology and covering dimension for topological spaces , Fund. Math. , 87 ( 1975 ), pp. 31 - 52 . Article | MR 362264 | Zbl 0336.55003 · Zbl 0336.55003
[13] J. Pelant , Cardinal reflections and point character of uniformities-counterexamples, Seminar Uniform spaces ( 1973-74 ), Prague , pp. 49 - 158 . Zbl 0326.54020 · Zbl 0326.54020
[14] M.D. Rice , A note on uniform paracompactness , Proc. Amer. Math. Soc. 62 . 2 ( 1977 ), pp. 359 - 362 . MR 436085 | Zbl 0353.54011 · Zbl 0353.54011
[15] E.V. Scepin , On a problem of Isbell , Soviet Math. Dokl. , 16 ( 1975 ), pp. 685 - 687 . MR 380743 | Zbl 0321.54016 · Zbl 0321.54016
[16] Smith , Refinements of Lebesgue covers , Fund. Math. , 70 ( 1971 ), pp. 1 - 6 . Article | MR 283753 | Zbl 0212.27202 · Zbl 0212.27202
[17] H. Tamano , On paracompactness , Pacific J. Math. , 10 ( 1960 ), pp. 1043 - 1047 . Article | MR 124876 | Zbl 0094.35403 · Zbl 0094.35403
[18] G. Vidossich , A note on cardinal reflections in the category of uniform spaces , Proc. Amer. M. S. , 23 ( 1969 ), pp. 55 - 58 . MR 263017 | Zbl 0181.25901 · Zbl 0181.25901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.