×

On shells of revolution with the Love-Kirchhoff hypotheses. (English) Zbl 0668.73035

On the occasion of the 100th anniversary of A. E. H. Love’s fundamental paper on thin elastic shell theory, the present article summarizes a line of developments on shells of revolution related to the Love-Kirchhoff hypotheses which form the basis of Love’s theory. The summary begins with the Günther-Reissner formulation of the linear theory which is shown to contain the classical first approximation shell theory as a special case. The static-geometric duality is deduced as a natural and immediate consequence of the more general theory. The repeated applications of this duality greatly simplify the solution process for boundary-value problems in shell theory, including the classical reduction of the axisymmetric bending problem and related recent reductions of shell equations for more general loadings to two simultaneous equations for a stress function and a displacement variable. In the nonlinear range, the article confines itself to Reissner’s geometrically nonlinear theory of axisymmetric deformation of shells of revolution and Marguerre’s shallow shell theory with special emphasis on recent results for elastic membranes, buckling of shells of revolution and applications of asymptotic methods.

MSC:

74B20 Nonlinear elasticity
74K15 Membranes
74G60 Bifurcation and buckling
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Aron: Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale, J. Reine u. Angew. Math. 78 (1874) 136-174. · JFM 06.0643.01 · doi:10.1515/crll.1874.78.136
[2] J.G. Berry: On thin hemispherical shells subjected to concentrated edge moments and forces, Proc. 2nd Midwest. Conf. on Solid Mech. (1955) 25-44.
[3] C.B. Biezeno: Über die Bestimmnng der Durchschlagskraft einer schwachgekrümmten kreisförmigen Platte, ZAMM 15 (1935) 10-22. · JFM 61.0891.02 · doi:10.1002/zamm.19350150105
[4] E. Bromberg: Non-linear bending of a circular plate under normal pressure, Comm. Pure Appl. Math. 94 (1956) 633-659. · Zbl 0072.41403 · doi:10.1002/cpa.3160090402
[5] E. Bromberg and J.J. Stoker: Non-linear theory of curved elastic sheets, Quart. Appl. Math. 3 (1945) 246-265. · Zbl 0063.00611
[6] B. Budiansky: Buckling of clamped shallow spherical shells, The Theory of Thin Elastic Shells (Proc. IUTAM Shell Symp., Delft, 1959; W. T. Koiter, ed.), North-Holland, Amsterdam (1960) 64-94.
[7] B. Budiansky and J.L. Sanders, Jr.: On the best first order linear shell theory, Progress in Applied Mechanics (The Prager Anniversary Volume; D. Drucker, ed.), Macmillan (1963) 129-140.
[8] R. Byrne, Jr.: Theory of small deformations of the thin elastic shells, Univ. Calif. Publ. in Math., New Series, 2 (1944) 103-152.
[9] C.R. Calladine: The theory of thin shell structures 1888-1988 (Love Centenary Lecture), Proc. Inst. Mech. Engrs. 202 (1988) 1-9. · doi:10.1243/PIME_PROC_1988_202_020_02
[10] A.J. Callegari and E.L. Reiss: Nonlinear boundary value problems for the circular membrane, Arch. Rat. Mech. Anal. 31 (1968) 390-400. · Zbl 0179.54406 · doi:10.1007/BF00251421
[11] A.J. Callegari, H.B. Keller, and E.L. Reiss: Membrane buckling: a study of solution multiplicity, Comm. Pure Appl. Math. 24 (1971) 499-521. · Zbl 0218.73061 · doi:10.1002/cpa.3160240405
[12] A.L. Cauchy: Sur les équations qui expriment les conditions d’équilibre ou les lois de mouvement interieur d’un corps solide, Exercises de Mathématique (ed. Cauchy), Paris Academy (1828).
[13] L.S. Cheo and E.L. Reiss: Unsymmetric wrinkling of circular plates, Quart. Appl. Math. 31 (1973) 75-91. · Zbl 0254.73059
[14] V.S. Chernina: On the system of differential equations of equilibrium of shells of revolution under bending loads, Prik. Mat. Mek. (PMM) 23 (1959) 258-265. · Zbl 0111.21103
[15] W.Z. Chien: Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection, National Tsing Hua Univ. Sci. Repts. 5 (1948) 71-94.
[16] R.A. Clark: On the theory of thin elastic toroidal shells, J. Math. & Phys. 24 (1950) 146-178. · Zbl 0041.53104
[17] R.A. Clark and O.S. Narayanaswamy: Nonlinear membrane problems for elastic shells of revolution, Proc. Sympos. Theory of Shells (L.H. Donnell Anniversary Volume; D. Muster, ed.), Univ. of Houston Press, Houston (1967) 80-110.
[18] E. Cosserat and F. Cosserat: Théories des Corps Déformables, Hermann, Paris (1909). · JFM 40.0862.02
[19] R. W. Dickey: The plane circular elastic surface under normal pressure, Arch. Rat. Mech. Anal. 26 (1967) 219-236. · Zbl 0166.43504 · doi:10.1007/BF00281971
[20] R. W. Dickey: Nonlinear bending of circular plates, SIAM J. Appl. Math. 30 (1976) 1-9. · Zbl 0325.73065 · doi:10.1137/0130001
[21] L.H. Donnell: Stability of thin-walled tubes under torsion, NACA Tech. Rep. No. 479 (1933).
[22] L.H. Donell: A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME 56 (1934) 795-806.
[23] M. Drmota, R. Scheidl, H. Troger and E. Weinmüller: On the imperfection sensitivity of complete spherical shells, Comput. Mechanics 2 (1987) 63-74. · Zbl 0614.73048
[24] Z. Elias: Civil Engineering, Ph.D. Dissertation, MIT, Cambridge, MA (1962).
[25] W. Flügge: Die Stabilität der Kreiszylinderschale, Ing.-Arch. 3 (1932) 463-506. · JFM 58.1285.02 · doi:10.1007/BF02079822
[26] A. Föppl: Vorlesungen über Technische Mechanik, Vol. 5, R. Oldenbourg, München (1907).
[27] J.P. Frakes and J.G. Simmonds: Asymptotic solutions of the von Kármán equations for a circular plate under a concentrated load, J. Appl. Mech. 52 (1985) 326-330. · Zbl 0569.73056 · doi:10.1115/1.3169048
[28] K.O. Friedrichs and R.F. Dressler: A boundary layer theory for elastic bending of plates, Comm. Pure Appl. Math. 14 (1961) 1-33. · Zbl 0096.40001 · doi:10.1002/cpa.3160140102
[29] K.O. Friedrichs and J.J. Stoker: The nonlinear boundary value problem of the buckled plate, Am. J. Math. 63 (1941) 839-888. · Zbl 0026.16301 · doi:10.2307/2371625
[30] A.L. Goldenveizer: The equations of the theory of thin shells, Prik. Mat. Mek. (PMM) 4 (1940) 32-42.
[31] A.L. Goldenveizer: Equations of the theory of shells in displacement and stress functions, Prik. Mat. Mek. (PMM) 21 (1957) 801-814.
[32] A.L. Goldenveizer: Theory of Thin Elastic Shells, Pergamon Press (1961). · Zbl 0145.45504
[33] H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: a note on uniqueness of positive solutions, J. Elasticity 17 (1987) 279-284. · Zbl 0615.73039 · doi:10.1007/BF00049458
[34] H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: New results on existence of positive solutions, Math. Meth. Appl. Sci. 10 (1988) 37-49. · Zbl 0635.34018 · doi:10.1002/mma.1670100104
[35] H. Grabmüller and R. Pirner: Positive solutions of annular elastic membrane problems with finite rotations, Studies in Appl. Math. 77 (1987) 223-252. · Zbl 0644.73045
[36] H. Grabmüller and R. Pirner: Existence theorems for some boundary value problems in the nonlinear theory of annular elastic membranes, Report 128, Oct. 1987, Inst. Angew. Math., Univ. Erlangen (to appear, 1988). · Zbl 0761.73058
[37] H. Grabmüller and H.J. Weinitschke: Finite displacements of annular elastic membranes, J. Elasticity 16 (1986) 135-147. · Zbl 0585.73064 · doi:10.1007/BF00043581
[38] M. Gräff, R. Scheidl, H. Troger and E. Weinmüller: An investigation of the complete post-buckling behavior of axisymmetric spherical shells, ZAMP 36 (1985) 803-821. · Zbl 0578.73045 · doi:10.1007/BF00944895
[39] R.D. Gregory: A note on multiple asymptotic series, S.I.A.M. J. Math. Anal. 11 (1980) 115-118. · Zbl 0429.41025
[40] R.D. Gregory and F.Y.M. Wan: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory, J. Elasticity 14 (1984) 27-64. · Zbl 0536.73047 · doi:10.1007/BF00041081
[41] R.D. Gregory and F.Y.M. Wan: On plate theories and Saint-Venant’s principle, Int. J. Solids & Structures 21 (1985) 1005-1024. · Zbl 0575.73060 · doi:10.1016/0020-7683(85)90052-6
[42] R.D. Gregory and F.Y.M. Wan: Edge effect in the stretching of plates, Local Effects in the Analysis of Structures, ed. P. Ladevèze, Elsevier Science Publishers B.V., Amsterdam (1985) 35-54. · Zbl 0619.73045
[43] R.D. Gregory and F.Y.M. Wan: On the interior solution for linear elastic plates, J. Appl. Mech. (to appear, 1988). · Zbl 0671.73046
[44] R.D. Gregory and F.Y.M. Wan: Edge data for cylindrical shells and the foundations of shell theory, Proc. ASME Symp. on Anal. & Comp. Models for Shells(ed. A.K. Noor), to appear (1989).
[45] W. Günther: Analoge Systeme von Schalen-Gleichungen, Ing.-Arch. 30 (1961) 160-186. · Zbl 0099.40601 · doi:10.1007/BF00534754
[46] A. Havers: Asymptotische Biegetheorie der unbelasteten Kugelschale, Ing. Arch. 6 (1935) 282-312. · JFM 61.0889.03 · doi:10.1007/BF02084691
[47] H. Hencky: Über den Spannungszustand in kreisrunden Platten, Z. Math. Phys. 63 (1915) 311-317. · JFM 45.1022.02
[48] F.B. Hildebrand: Asymptotic integration in shell theory, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 53-66. · Zbl 0041.53202
[49] F.B. Hildebrand, E. Reissner and G.B. Thomas: ?Notes on the foundations of the theory of small displacements of orthotropic shells?, NACA Techn. Notes No. 1833 (March, 1949).
[50] N.C. Huang: Unsymmetrical buckling of thin spherical shells, J. Appl. Mech. 31 (1964) 447-457.
[51] J.W. Hutchinson: Imperfection sensitivity of externally pressurized spherical shells, J. Appl. Mech. 34 (1967) 49-55. · Zbl 0159.27006
[52] M.W. Johnson: A boundary layer theory of unsymmetric deformations of circular cylindrical elastic shells, J. Math. & Phys. 42 (1963) 167-187. · Zbl 0118.41403
[53] M.W. Johnson and E. Reissner: On the foundations of the theory of thin elastic shells, J. Math. & Phys. 37 (1958) 375-392. · Zbl 0086.18103
[54] R. Kao and N. Perrone: Large deflections of axisymmetric circular membranes, Int. J. Solids & Structures 7 (1971) 1601-1612. · Zbl 0226.73045 · doi:10.1016/0020-7683(71)90001-1
[55] A. Kaplan: Buckling of spherical shells, Thin Shell Structures (The Sechler Anniversary Volume; Y.C. Fung, ed.), Prentice-Hall, Englewood Cliffs, N.J. (1974) 247-288.
[56] H.B. Keller, J.B. Keller and E.L. Reiss: Buckled states of circular plates, Quart. Appl. Math. 20 (1962) 55-65.
[57] H.B. Keller and E.L. Reiss: Iterative solutions for the nonlinear bending of circular plates, Comm. Pure Appl. Math. 11 (1958) 272-292. · Zbl 0081.18505 · doi:10.1002/cpa.3160110302
[58] G.R. Kirchhoff: Über das Gleichgewicht und Bewegungen einer elastischen Scheibe, J. Reine u. Angew. Math. 40 (1850) 51-88. · ERAM 040.1086cj · doi:10.1515/crll.1850.40.51
[59] G.R. Kirchhoff: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. Reine u. Angew. Math. 56 (1859) 285-313. (also Vorlesungen über Math. Physik, Mechanik, 2nd. Ed., Leipzig (1877)). · ERAM 056.1494cj · doi:10.1515/crll.1859.56.285
[60] W.T. Koiter: Over de stabiliteit van het elastisch evenwicht (On the stability of elastic equilibrium), Thesis, Delft (1945). (English translation as NASA TTF-10 (1967)).
[61] W.T. Koiter: A consistent first approximation in the general theory of thin elastic shells, Theory of Thin Elastic Shells (Proc. 1st IUTAM Symp. on Shells, Delft (1959); W.T. Koiter, ed.), North Holland (1960) 12-33.
[62] W.T. Koiter: Elastic stability and post-buckling behavior, Proc. Symp. Nonlinear Problems, Madison University of Wisconsin Press (1963) 257-275. · Zbl 0112.16705
[63] W.T. Koiter: A spherical shell under point loads at its poles, Progress in Applied Mechanics (The Prager A Anniversary Volume; D. Drucker, ed.), The Macmillan Co. (1963) 155-169.
[64] W.T. Koiter: On the nonlinear theory of thin elastic shells, Proc. Kon. Nederl. Akad. Wetensch. B69 (1966) 1-54.
[65] W.T. Koiter: The nonlinear buckling problem of a complete spherical shell under external pressure, Proc. Kon. Nederl. Akad. Wetensch. B72 (1969) 40-123. · Zbl 0197.22302
[66] W.T. Koiter: The intrinsic equations of shell theory with some application, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat Nasser, ed.), Pergamon Press (1980) 139-154. · Zbl 0458.73050
[67] W.T. Koiter and J.G. Simmonds: Foundations of shell theory, Proc. 13th Int. Cong. Theor. Appl. Mech., Moscow (1972), (E. Becker and G.K. Mikhailov, (eds.)), Springer-Verlag (1973) 150-176.
[68] G.A. Kriegsmann and C.G. Lange: On large axisymmetrical deflection states of spherical shells, J. Elasticity 10 (1980) 179-192. · Zbl 0444.73033 · doi:10.1007/BF00044502
[69] C.G. Lange and G.A. Kriegsmann: The axisymmetric branching behavior of complete spherical shells, Quart. Appl. Math. 39 (1981) 145-178. · Zbl 0468.73051
[70] M.L. Lecornu: Sur l’équilibre des surfaces flexibles et inextensibles, J. de l’Ecole Polytech. 29 (1880) 1-109.
[71] R.W. Leonard: Nonlinear first approximation thin shell and membrane theory, NASA Tech. Report, NASA-Langley (1961).
[72] A. Libai and J.G. Simmonds: Nonlinear elastic shell theory, Advances in Applied Mechanics 23, Academic Press (1983) 271-371. · Zbl 0575.73079
[73] A. Libai and J.G. Simmonds: The Nonlinear Theory of Elastic Shells: One Spatial Dimension, Academic Press Inc., Boston (1988). · Zbl 0644.73042
[74] Y.H. Lin and F.Y.M. Wan: Asymptotic solutions of steadily spinning shallow shells of revolution under uniform pressure, Int. J. Solids & Structures 21 (1985) 27-53. · Zbl 0558.73061 · doi:10.1016/0020-7683(85)90103-9
[75] Y.H. Lin and F.Y.M. Wan: Orthotropic semi-infinite cantilevered strips and the foundations of plate theories, Appl. Math. Tech. Rep. 87-96, Univ. of Washington, Seattle (July 1987; revised April, 1988).
[76] Y.H. Lin and F.Y.M. Wan: Some canonical problems for orthotropic cylinders and the foundations of plate theories, Appl. Math. Tech. Rep. 88-5, University of Washington, Seattle (July, 1988).
[77] A.E.H. Love: On the small free vibrations and deformation of thin elastic shells, Phil. Trans. Roy. Soc. A179 (1888) 491-546. · JFM 20.1075.01
[78] A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover (1944) (1st Ed., 1893).
[79] A.I. Lurje: General theory of thin elastic shells, Prik. Mat. Mek. (PMM) 4 (1940) 7-34. · JFM 66.1379.02
[80] R.L. Mallet and F.Y.M. Wan: The static-geometric duality and a staggered mesh difference scheme for some shell problems, Studies in Appl. Math. 52 (1973) 21-38.
[81] K. Marguerre: Zur Theorie der gekrümmten Platte grosser Formänderung, Proc. 5th Intern. Congr. Appl. Mech. (1938) 93-101. · JFM 65.0946.01
[82] E. Meissner: Das Elastizitätsproblem für dünne Schalen von Ringflächen-, Kugel- und Kegelform, Phys. Z. 14 (1913) 343-349. · JFM 44.0930.01
[83] P.M. Naghdi: The effect of transverse shear deformation on the bending of elastic shells of revolution, Quart. Appl. Math. 15 (1957) 41-52. · Zbl 0088.16803
[84] P.M. Naghdi: Foundations of elastic shell theory, Progr. in Solid Mech., Vol. IV (I. Sneddon and R. Hill, ed.), North-Holland (1963) 1-90.
[85] P.M. Naghdi and R.P. Nordgren: On the nonlinear theory of elastic shells under the Kirchhoff hypothesis, Quart. Appl. Math. 21 (1963) 49-59. · Zbl 0115.19401
[86] E. Novak: On convergence of interpolated iterations: An application to nonlinear plate bending, SIAM J. Math. Anal. (in print, 1988).
[87] D.F. Parker and F.Y.M. Wan: Finite polar dimpling of shallow caps under sub-buckling axisymmetric pressure distribution, SIAM J. Appl. Math. 44 (1984) 301-326. · Zbl 0535.73034 · doi:10.1137/0144022
[88] Lord Rayleigh (J.W. Strutt): On the infinitesimal bending of surfaces of revolution, London Math. Soc. Proc. 13 (1881) 4-16. · JFM 14.0810.01 · doi:10.1112/plms/s1-13.1.4
[89] E.L. Reiss: A uniqueness theorem for the nonlinear axisymmetric bending of circular plates, AIAA Journal 1 (1963) 2650-2652. · Zbl 0133.18802 · doi:10.2514/3.2142
[90] E. Reissner: On the theory of thin elastic shells, Contributions to Appl. Mech. (H. Reissner Anniversary Volume), J.W. Edwards, Ann Arbor, MI (1949) 231-247. · Zbl 0040.26505
[91] E. Reissner: On axisymmetrical deformations of thin shells of revolution, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 27-52. · Zbl 0041.53201
[92] E. Reissner: The edge effect in symmetric bending of shallow shells of revolution, Comm. Pure Appl. Math. 12 (1959) 385-398. · Zbl 0094.20301 · doi:10.1002/cpa.3160120211
[93] E. Reissner: On torsion of thin cylindrical shells, J. Mech. Phys. Solids 7 (1959) 157-162. · Zbl 0212.57503 · doi:10.1016/0022-5096(59)90002-X
[94] E. Reissner: Variational considerations for elastic beams and shells, Proc. ASCE (EM) 8 (1962) 23-57.
[95] E. Reissner: On the equations for finite symmetrical deflections of thin shells of revolution, Progress in Mechanics (Prager Anniversary Volume; D.C. Drucker, (ed.)), Macmillan, New York (1963) 171-178.
[96] E. Reissner: On the foundations of generalized linear shell theory, Proc. 2nd IUTAM Symp. on Thin Shells (1967), F. Niordson, ed., Springer-Verlag (1969) 15-30.
[97] E. Reissner: On finite symmetrical deflections of thin shells of revolution, J. Appl. Mech. 36 (1969) 267-270. · Zbl 0183.53903
[98] E. Reissner: On the derivation of two-dimensional shell equations from three-dimensional elasticity theory, Studies in Appl. Math. 49 (1970) 205-224. · Zbl 0198.57804
[99] E. Reissner: On consistent first approximations in the general linear theory of thin elastic shells, Ing.-Arch. 40 (1971) 402-419. · Zbl 0227.73145 · doi:10.1007/BF00533975
[100] E. Reissner: Linear and nonlinear theories of thin elastic shells, Thin Shell Structures (The E. Sechler Volume; Y.C. Fung, ed.), Prentice Hall (1974) 29-44.
[101] E. Reissner: On finite axisymmetrical deformations of thin elastic shells of revolution, Comput. Mechanics (to appear). · Zbl 0041.53201
[102] E. Reissner and F.Y.M. Wan: Rotating shallow elastic shells of revolution, J. Soc. Ind. Appl. Math. 13 (1965) 333-352. · doi:10.1137/0113019
[103] E. Reissner and F.Y.M. Wan: A note on the stress strain relations of the linear theory of shells, ZAMP 17 (1966) 676-681. · Zbl 0148.19702 · doi:10.1007/BF01595105
[104] E. Reissner and F.Y.M. Wan: On stress strain relations and strain displacement relations of the linear theory of shells, Recent Progress in Applied Mechanics (The Folke Odqvist Volume), Almqvist & Wiksell (Stockholm), (1967) 487-500.
[105] E. Reissner and F.Y.M. Wan: Rotationally symmetric stress and strain in shells of revolution, Studies in Appl. Math. 48 (1969) 1-17. · Zbl 0184.50703
[106] H. Reissner: Spannungen in Kugelschalen (Kuppeln), Muller-Breslau Festschrift (dy1912) 181-193.
[107] P. Rentrop: Eine Taylorreihen-Methode zur Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM, Inst. f. Mathematik, München (1977).
[108] J.L. Sanders, Jr.: Nonlinear theories for thin shells, Quart. Appl. Math. 21 (1963) 21-36.
[109] H. Schaefer: Die Analogie zwischen den Verschiebungen und den Spannungsfunktionen in der Biegetheorie der Kreiszylinderschale, Ing.-Arch. 29 (1960) 125-133. · Zbl 0091.39501 · doi:10.1007/BF00536540
[110] E. Schwerin: Uber Spannungen und Formänderungen kreisringförmiger Membranen, Z. tech. Phys. 12 (1929) 651-659. · JFM 55.0464.06
[111] E. Schwerin: Über Spannungen in symmetrisch und unsymmetrisch belasteten Kugelschalen (Kuppeln) insbesondere bei Belastung durch Winddruck, Armierter Beton 12 (1919) 25-37, 54-63. · JFM 47.0747.01
[112] W.J. Seaman and F.Y.M. Wan: Lateral bending and twisting of toroidal shells, Studies in Appl. Math. 53 (1974) 73-89. · Zbl 0314.73036
[113] J.G. Simmonds: A set of simple, accurate equations for circular cylindrical elastic shells, Int. J. Solids & Structures 2 (1966) 525-541. · doi:10.1016/0020-7683(66)90036-9
[114] J.G. Simmonds: Green’s function for closed elastic spherical shells; Exact and accurate approximate solutions, Proc. Kon. Nederl. Akad. Wetensch. B71 (1968) 236-249.
[115] J.G. Simmonds: Rigorous expunction of Poisson’s ratio from the Reissner-Meissner equations, Int. J. Solids & Structures 11 (1975) 1051-1056. · Zbl 0314.73086 · doi:10.1016/0020-7683(75)90047-5
[116] J.G. Simmonds and D.A. Danielson: Nonlinear shell theory with a finite rotation vector, Proc. Kon. Nederl. Akad. Wetensch. 73 (1970) 460-478. · Zbl 0213.27103
[117] J.G. Simmonds and D.A. Danielson: Nonlinearshell theory with finite rotation and stress-function vectors, J. Appl. Mech. 39 (1972) 1084-1090. · Zbl 0248.73043 · doi:10.1115/1.3422833
[118] J.G. Simmonds and A. Libai: Asymptotic forms of a simplified version of the nonlinear Reissner equations for clamped elastic spherical caps under outward pressure, Comput. Mechanics 2 (1987) 231-224. · Zbl 0699.73041 · doi:10.1007/BF00571027
[119] R.M. Simons: A power series solution of the nonlinear equations for axisymmetrical bending of shallow spherical shells, J. Math. & Phys. 35 (1956) 164-176. · Zbl 0072.19201
[120] H.S. Tsien: A theory for the buckling of thin shells, J. Aero. Sci. 9 (1942) 373-384.
[121] A. van der Neut: De elastische stabiliteit van de dunwandigen bol, Thesis, Delft (1932).
[122] Th. von Kármán: Festigkeitsprobleme im Maschinenbau, Encyklopädie der Mathematischen Wissenschaften, Vol. 4/4 (1910) 311-385.
[123] Th. von Kármán and H.S. Tsien: The buckling of spherical shells by external pressure, J. Aero. Sci. 7 (1939) 43-50. · JFM 65.1489.02
[124] Th. von Kármán and H.S. Tsien: The buckling of thin cylindrical shells under axial compression, J. Aero. Sci. 8 (1941) 303-312. · JFM 67.1105.03
[125] N. Wagner: Existence theorem for a nonlinear boundary value problem in ordinary differential equations, Contrib. Diff. Eq. 3 (1965) 325-336.
[126] F.Y.M. Wan: Two variational theorems for thin shells, J. Math. & Phys. 47 (1968) 429-431. · Zbl 0179.54504
[127] F.Y.M. Wan: On the displacement boundary value problem of shallow spherical shells, Int. J. Solids & Structures 4 (1968) 661-666. · doi:10.1016/0020-7683(68)90067-X
[128] F.Y.M. Wan: The side force problem for shallow helicoidal shells, J. Appl. Mech. 36 (1969) 292-295. · Zbl 0184.50902
[129] F.Y.M. Wan: Exact reductions of the equations of linear theory of shells of revolution, Studies in Appl. Math. 48 (1969) 361-375. · Zbl 0184.50803
[130] F.Y.M. Wan: Rotationally symmetric shearing and bending of helicoidal shells, Studies in Appl. Math. 48 (1970) 351-369. · Zbl 0219.73083
[131] F.Y.M. Wan: Circumferentially sinusoidal stress and strain in shells of revolution, Int. J. Solids & Structures 4 (1970) 959-973. · Zbl 0194.26802 · doi:10.1016/0020-7683(70)90007-7
[132] F.Y.M. Wan: On the equations of the linear theory of elastic conical shells, Studies in Appl. Math. 49 (1970) 69-83. · Zbl 0187.23401
[133] F.Y.M. Wan: Laterally loaded shells of revolution, Ing.-Arch. 42 (1973) 245-258. · Zbl 0259.73043 · doi:10.1007/BF00533612
[134] F.Y.M. Wan: The dimpling of spherical caps, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 495-508. · Zbl 0453.73048
[135] F.Y.M. Wan: Polar dimpling of complete spherical shells, Theory of Shells (Proc. 3rd IUTAM Shell Symp., Tbilisi (1978); W.T. Koiter and G.K. Mikhailov, ed.), North Holland (1980) 191-207.
[136] F.Y.M. Wan: Shallow caps with a localized axisymmetric load distribution, Flexible Shells. (Proc. EUROMECH Colloq. No. 165; E.L. Axelrad and F.A. Emmerling, eds.), Springer-Verlag (1984) 124-145.
[137] F.Y.M. Wan: Lecture notes on the linear theory of shells of revolution, Appl. Math. Tech. Report 84-89, University of British Columbia (1984).
[138] F.Y.M. Wan and H.J. Weinitschke: Boundary layer solutions for some nonlinear elastic membrane problems, ZAMP 38 (1987) 79-91. · Zbl 0607.73041 · doi:10.1007/BF00944922
[139] S. Way: Bending of circular plates with large deflection, Trans. A.S.M.E. 56 (1934) 627-636.
[140] H.J. Weinitschke: On the stability problem for shallow spherical shells, J. Math. & Phys. 38 (1960) 209-231. · Zbl 0152.43603
[141] H.J. Weinitschke: On asymmetric buckling of shallow spherical shells, J. Math. & Phys. 44 (1965) 141-163.
[142] H.J. Weinitschke: Zur mathematischen Theorie der endlichen Verbiegung elastischer Platten, Habilitationsschrift, Universität Hamburg (1965).
[143] H.J. Weinitschke: Existenz-und Eindeutigkeitssätze für die Gleichungen der kreisförmigen Membran, Meth. u Verf. d. Math. Physik 3 (1970) 117-139. · Zbl 0219.73086
[144] H.J. Weinitschke: On axisymmetric deformations of nonlinear elastic membranes, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 523-542. · Zbl 0479.73057
[145] H.J. Weinitschke: On the calculation of limit and bifurcation points of stability problems in elastic shells, Int. J. Solids & Structures 21 (1985) 79-95. · Zbl 0559.73056 · doi:10.1016/0020-7683(85)90106-4
[146] H.J. Weinitschke: On finite displacements of circular elastic membranes, Math. Meth. Appl. Sci. 9 (1987) 76-98. · Zbl 0622.73044 · doi:10.1002/mma.1670090108
[147] H.J. Weinitschke: On uniqueness of axisymmetric deformations of elastic plates and shells, SIAM J. Math. Anal. 18 (1988) 680-692. · Zbl 0654.73031
[148] H.J. Weinitschke: Stable and unstable membrane solutions for shells of revolutions, to appear in Proc. Pan Amer. Congr. Appl. Mech. (PACAM, Rio de Janeiro (1989); A Leissa, ed.). · Zbl 0825.73292
[149] H.J. Weinitschke and C.G. Lange: Asymptotic solutions for finite deformation of thin shells of revolution with a small circular hole, Quart. Appl. Math. 45 (1987) 401-417. · Zbl 0627.73037
[150] E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind, SIAM J. Math. Anal. 15 (1984) 287-307. · Zbl 0537.34017 · doi:10.1137/0515023
[151] J.H. Wolkowisky: Existence of buckled states of circular plates, Comm. Pure Appl. Math. 20 (1967) 549-560. · Zbl 0168.45206 · doi:10.1002/cpa.3160200304
[152] M. Yanowitch: Nonlinear buckling of circular clamped plates, Comm. Pure Appl. Math. 9 (1956) 661-672. · Zbl 0072.41404 · doi:10.1002/cpa.3160090403
[153] R. Zoelly: Über ein Knickproblem an der Kugelschale, Thesis, Zürich (1915).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.