Shu, Jie; Zhai, Shuai Generalized Birch lemma and the 2-part of the Birch and Swinnerton-Dyer conjecture for certain elliptic curves. (English) Zbl 1481.11068 J. Reine Angew. Math. 775, 117-143 (2021). Reviewer: Kazuma Morita (Sapporo) MSC: 11G40 11G05 14H52 PDF BibTeX XML Cite \textit{J. Shu} and \textit{S. Zhai}, J. Reine Angew. Math. 775, 117--143 (2021; Zbl 1481.11068) Full Text: DOI arXiv OpenURL
Bennett, Michael A.; Gherga, Adela; Rechnitzer, Andrew Computing elliptic curves over \(\mathbb {Q}\). (English) Zbl 1468.11123 Math. Comput. 88, No. 317, 1341-1390 (2019). MSC: 11G05 11D59 PDF BibTeX XML Cite \textit{M. A. Bennett} et al., Math. Comput. 88, No. 317, 1341--1390 (2019; Zbl 1468.11123) Full Text: DOI OpenURL
Bennett, Michael A.; Rechnitzer, Andrew Computing elliptic curves over \(\mathbb{Q}\): bad reduction at one prime. (English) Zbl 1410.11045 Melnik, Roderick (ed.) et al., Recent progress and modern challenges in applied mathematics, modeling and computational science. Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer. Fields Inst. Commun. 79, 387-415 (2017). MSC: 11G05 11D25 11D59 11E76 11Y50 11Y65 14H52 PDF BibTeX XML Cite \textit{M. A. Bennett} and \textit{A. Rechnitzer}, Fields Inst. Commun. 79, 387--415 (2017; Zbl 1410.11045) Full Text: DOI OpenURL
Delaunay, Christophe; Wuthrich, Christian Self-points on elliptic curves of prime conductor. (English) Zbl 1238.11064 Int. J. Number Theory 5, No. 5, 911-932 (2009). Reviewer: Filip Najman (Zagreb) MSC: 11G05 11G18 11G40 PDF BibTeX XML Cite \textit{C. Delaunay} and \textit{C. Wuthrich}, Int. J. Number Theory 5, No. 5, 911--932 (2009; Zbl 1238.11064) Full Text: DOI OpenURL
Watkins, Mark Computing the modular degree of an elliptic curve. (English) Zbl 1162.11349 Exp. Math. 11, No. 4, 487-502 (2002). MSC: 11G05 11G18 11Y35 11F67 PDF BibTeX XML Cite \textit{M. Watkins}, Exp. Math. 11, No. 4, 487--502 (2002; Zbl 1162.11349) Full Text: DOI EuDML OpenURL
Serre, Jean-Pierre On the modular representations of degree two of \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\). (Sur les représentations modulaires de degré 2 de \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\).) (French) Zbl 0641.10026 Duke Math. J. 54, 179-230 (1987). Reviewer: G. Frey MSC: 11F80 11F33 11G05 11R32 11R39 PDF BibTeX XML Cite \textit{J.-P. Serre}, Duke Math. J. 54, 179--230 (1987; Zbl 0641.10026) Full Text: DOI OpenURL