Khandelwal, Rohit; Porwal, Kamana Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem. (English) Zbl 1486.65250 J. Comput. Appl. Math. 412, Article ID 114364, 16 p. (2022). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{R. Khandelwal} and \textit{K. Porwal}, J. Comput. Appl. Math. 412, Article ID 114364, 16 p. (2022; Zbl 1486.65250) Full Text: DOI OpenURL
Wang, Fei; Reddy, B. Daya A priori error analysis of virtual element method for contact problem. (English) Zbl 07525639 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 10, 12 p. (2022). MSC: 65N30 49J40 PDF BibTeX XML Cite \textit{F. Wang} and \textit{B. D. Reddy}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 10, 12 p. (2022; Zbl 07525639) Full Text: DOI OpenURL
Apushkinskaya, Darya; Repin, Sergey Functional a posteriori error estimates for the parabolic obstacle problem. (English) Zbl 1487.35455 Comput. Methods Appl. Math. 22, No. 2, 259-276 (2022). MSC: 35R35 35K20 35K85 PDF BibTeX XML Cite \textit{D. Apushkinskaya} and \textit{S. Repin}, Comput. Methods Appl. Math. 22, No. 2, 259--276 (2022; Zbl 1487.35455) Full Text: DOI OpenURL
Meyer, C.; Weymuth, M. A priori error analysis for an optimal control problem governed by a variational inequality of the second kind. (English) Zbl 1486.49014 Numer. Funct. Anal. Optim. 43, No. 1, 35-67 (2022). MSC: 49J40 49N60 65G99 65K15 65N30 PDF BibTeX XML Cite \textit{C. Meyer} and \textit{M. Weymuth}, Numer. Funct. Anal. Optim. 43, No. 1, 35--67 (2022; Zbl 1486.49014) Full Text: DOI OpenURL
Gaddam, Sharat; Gudi, Thirupathi; Porwal, Kamana Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods. (English) Zbl 1486.65248 BIT 62, No. 1, 89-124 (2022). MSC: 65N30 65N15 49J40 PDF BibTeX XML Cite \textit{S. Gaddam} et al., BIT 62, No. 1, 89--124 (2022; Zbl 1486.65248) Full Text: DOI OpenURL
Feng, Fang; Han, Weimin; Huang, Jianguo The virtual element method for an obstacle problem of a Kirchhoff-love plate. (English) Zbl 07427967 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106008, 18 p. (2021). MSC: 65N30 65N15 74K20 74B10 35A23 35J30 74S05 35Q74 PDF BibTeX XML Cite \textit{F. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106008, 18 p. (2021; Zbl 07427967) Full Text: DOI OpenURL
Wick, Thomas Dual-weighted residual a posteriori error estimates for a penalized phase-field slit discontinuity problem. (English) Zbl 07415836 Comput. Methods Appl. Math. 21, No. 3, 693-707 (2021). MSC: 74R10 65N30 65N50 49M15 35Q74 PDF BibTeX XML Cite \textit{T. Wick}, Comput. Methods Appl. Math. 21, No. 3, 693--707 (2021; Zbl 07415836) Full Text: DOI OpenURL
Menaldi, José-Luis; Rautenberg, Carlos N. On some quasi-variational inequalities and other problems with moving sets. (English) Zbl 1466.35209 J. Convex Anal. 28, No. 2, 629-654 (2021). MSC: 35J86 35J60 35R35 65K10 93E20 PDF BibTeX XML Cite \textit{J.-L. Menaldi} and \textit{C. N. Rautenberg}, J. Convex Anal. 28, No. 2, 629--654 (2021; Zbl 1466.35209) Full Text: arXiv Link OpenURL
Dabaghi, Jad; Delay, Guillaume A unified framework for high-order numerical discretizations of variational inequalities. (English) Zbl 07351761 Comput. Math. Appl. 92, 62-75 (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{J. Dabaghi} and \textit{G. Delay}, Comput. Math. Appl. 92, 62--75 (2021; Zbl 07351761) Full Text: DOI OpenURL
Karkulik, Michael A finite element method for elliptic Dirichlet boundary control problems. (English) Zbl 1451.65196 Comput. Methods Appl. Math. 20, No. 4, 827-843 (2020). MSC: 65N30 PDF BibTeX XML Cite \textit{M. Karkulik}, Comput. Methods Appl. Math. 20, No. 4, 827--843 (2020; Zbl 1451.65196) Full Text: DOI arXiv OpenURL
Piersanti, Paolo; Shen, Xiaoqin Numerical methods for static shallow shells lying over an obstacle. (English) Zbl 1465.65144 Numer. Algorithms 85, No. 2, 623-652 (2020). MSC: 65N30 35J87 74K25 74B10 PDF BibTeX XML Cite \textit{P. Piersanti} and \textit{X. Shen}, Numer. Algorithms 85, No. 2, 623--652 (2020; Zbl 1465.65144) Full Text: DOI OpenURL
Cicuttin, Matteo; Ern, Alexandre; Gudi, Thirupathi Hybrid high-order methods for the elliptic obstacle problem. (English) Zbl 1436.65176 J. Sci. Comput. 83, No. 1, Paper No. 8, 18 p. (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 65N15 65N12 35B45 PDF BibTeX XML Cite \textit{M. Cicuttin} et al., J. Sci. Comput. 83, No. 1, Paper No. 8, 18 p. (2020; Zbl 1436.65176) Full Text: DOI HAL OpenURL
Lewis, Thomas; Rapp, Aaron; Zhang, Yi Convergence analysis of symmetric dual-wind discontinuous Galerkin approximation methods for the obstacle problem. (English) Zbl 1433.65305 J. Math. Anal. Appl. 485, No. 2, Article ID 123840, 22 p. (2020). MSC: 65N30 65K10 35J86 46E35 PDF BibTeX XML Cite \textit{T. Lewis} et al., J. Math. Anal. Appl. 485, No. 2, Article ID 123840, 22 p. (2020; Zbl 1433.65305) Full Text: DOI OpenURL
Hafemeyer, Dominik; Kahle, Christian; Pfefferer, Johannes Finite element error estimates in \(L^2\) for regularized discrete approximations to the obstacle problem. (English) Zbl 1433.35036 Numer. Math. 144, No. 1, 133-156 (2020). MSC: 35J20 35J50 65N30 65G99 65N15 PDF BibTeX XML Cite \textit{D. Hafemeyer} et al., Numer. Math. 144, No. 1, 133--156 (2020; Zbl 1433.35036) Full Text: DOI arXiv OpenURL
Führer, Thomas First-order least-squares method for the obstacle problem. (English) Zbl 1447.65138 Numer. Math. 144, No. 1, 55-88 (2020). Reviewer: Noureddine Daili (Sétif) MSC: 65N30 65N12 49J40 65N15 35B45 PDF BibTeX XML Cite \textit{T. Führer}, Numer. Math. 144, No. 1, 55--88 (2020; Zbl 1447.65138) Full Text: DOI arXiv OpenURL
Cui, Jintao; Zhang, Yi A new analysis of discontinuous Galerkin methods for a fourth order variational inequality. (English) Zbl 1441.65094 Comput. Methods Appl. Mech. Eng. 351, 531-547 (2019). MSC: 65N30 49J40 35J20 35J87 65K15 65N15 PDF BibTeX XML Cite \textit{J. Cui} and \textit{Y. Zhang}, Comput. Methods Appl. Mech. Eng. 351, 531--547 (2019; Zbl 1441.65094) Full Text: DOI OpenURL
Gimperlein, Heiko; Stocek, Jakub Space-time adaptive finite elements for nonlocal parabolic variational inequalities. (English) Zbl 1441.65077 Comput. Methods Appl. Mech. Eng. 352, 137-171 (2019). MSC: 65M60 65K15 65M15 65M50 74M10 74M15 74S05 PDF BibTeX XML Cite \textit{H. Gimperlein} and \textit{J. Stocek}, Comput. Methods Appl. Mech. Eng. 352, 137--171 (2019; Zbl 1441.65077) Full Text: DOI arXiv OpenURL
Xu, Chao; Shi, Dongyang Superconvergence analysis of low order nonconforming finite element methods for variational inequality problem with displacement obstacle. (English) Zbl 1429.65279 Appl. Math. Comput. 348, 1-11 (2019). MSC: 65N30 35J86 65K15 65N12 49J40 PDF BibTeX XML Cite \textit{C. Xu} and \textit{D. Shi}, Appl. Math. Comput. 348, 1--11 (2019; Zbl 1429.65279) Full Text: DOI OpenURL
Hertlein, Lukas; Ulbrich, Michael An inexact bundle algorithm for nonconvex nonsmooth minimization in Hilbert space. (English) Zbl 1461.49041 SIAM J. Control Optim. 57, No. 5, 3137-3165 (2019). MSC: 49M37 49J52 49K20 65K05 90C26 90C56 PDF BibTeX XML Cite \textit{L. Hertlein} and \textit{M. Ulbrich}, SIAM J. Control Optim. 57, No. 5, 3137--3165 (2019; Zbl 1461.49041) Full Text: DOI OpenURL
Veeser, Andreas Positivity preserving gradient approximation with linear finite elements. (English) Zbl 1420.65127 Comput. Methods Appl. Math. 19, No. 2, 295-310 (2019). MSC: 65N30 41A29 41A05 41A36 65N15 PDF BibTeX XML Cite \textit{A. Veeser}, Comput. Methods Appl. Math. 19, No. 2, 295--310 (2019; Zbl 1420.65127) Full Text: DOI OpenURL
Han, Weimin; Sofonea, Mircea Numerical analysis of hemivariational inequalities in contact mechanics. (English) Zbl 1433.65296 Acta Numerica 28, 175-286 (2019). MSC: 65N30 35Q74 74F15 74S05 65M60 65M06 65M12 65M15 35A01 35A02 74D10 PDF BibTeX XML Cite \textit{W. Han} and \textit{M. Sofonea}, Acta Numerica 28, 175--286 (2019; Zbl 1433.65296) Full Text: DOI OpenURL
Feng, Fang; Han, Weimin; Huang, Jianguo Virtual element methods for elliptic variational inequalities of the second kind. (English) Zbl 1419.49014 J. Sci. Comput. 80, No. 1, 60-80 (2019). MSC: 49J40 49M30 PDF BibTeX XML Cite \textit{F. Feng} et al., J. Sci. Comput. 80, No. 1, 60--80 (2019; Zbl 1419.49014) Full Text: DOI OpenURL
Gudi, Thirupathi; Majumder, Papri Convergence analysis of finite element method for a parabolic obstacle problem. (English) Zbl 1418.65173 J. Comput. Appl. Math. 357, 85-102 (2019). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{P. Majumder}, J. Comput. Appl. Math. 357, 85--102 (2019; Zbl 1418.65173) Full Text: DOI Link OpenURL
Banz, Lothar; Petsche, Jan; Schröder, Andreas Hybridization and stabilization for hp-finite element methods. (English) Zbl 1407.65280 Appl. Numer. Math. 136, 66-102 (2019). MSC: 65N30 35R09 65N15 PDF BibTeX XML Cite \textit{L. Banz} et al., Appl. Numer. Math. 136, 66--102 (2019; Zbl 1407.65280) Full Text: DOI OpenURL
Gimperlein, Heiko; Meyer, Fabian; Özdemir, Ceyhun; Stephan, Ernst P. Time domain boundary elements for dynamic contact problems. (English) Zbl 1440.74245 Comput. Methods Appl. Mech. Eng. 333, 147-175 (2018). MSC: 74M15 35L20 35Q74 49J40 74M20 PDF BibTeX XML Cite \textit{H. Gimperlein} et al., Comput. Methods Appl. Mech. Eng. 333, 147--175 (2018; Zbl 1440.74245) Full Text: DOI arXiv OpenURL
Banz, Lothar; Lamichhane, Bishnu P.; Stephan, Ernst P. Higher order FEM for the obstacle problem of the \(p\)-Laplacian – a variational inequality approach. (English) Zbl 1440.65176 Comput. Math. Appl. 76, No. 7, 1639-1660 (2018). MSC: 65N30 65N50 65N12 65N15 65K15 35J87 35J92 PDF BibTeX XML Cite \textit{L. Banz} et al., Comput. Math. Appl. 76, No. 7, 1639--1660 (2018; Zbl 1440.65176) Full Text: DOI OpenURL
Wang, Fei; Eichholz, Joseph; Han, Weimin A two level algorithm for an obstacle problem. (English) Zbl 1427.65381 Appl. Math. Comput. 330, 65-76 (2018). MSC: 65N30 49J40 65K15 65N12 65N15 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Comput. 330, 65--76 (2018; Zbl 1427.65381) Full Text: DOI OpenURL
Gustafsson, Tom; Stenberg, Rolf; Videman, Juha H. Nitsche’s method for unilateral contact problems. (English) Zbl 1428.65083 Port. Math. (N.S.) 75, No. 3-4, 189-204 (2018). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 65N15 35B45 74M15 35Q74 74B05 74M10 PDF BibTeX XML Cite \textit{T. Gustafsson} et al., Port. Math. (N.S.) 75, No. 3--4, 189--204 (2018; Zbl 1428.65083) Full Text: DOI arXiv OpenURL
Gaddam, Sharat; Gudi, Thirupathi Inhomogeneous Dirichlet boundary condition in the a posteriori error control of the obstacle problem. (English) Zbl 1409.65092 Comput. Math. Appl. 75, No. 7, 2311-2327 (2018). MSC: 65N30 65K15 65N15 PDF BibTeX XML Cite \textit{S. Gaddam} and \textit{T. Gudi}, Comput. Math. Appl. 75, No. 7, 2311--2327 (2018; Zbl 1409.65092) Full Text: DOI arXiv OpenURL
Han, Weimin Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. (English) Zbl 1404.74158 Math. Mech. Solids 23, No. 3, 279-293 (2018). MSC: 74S05 74M15 74M10 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{W. Han}, Math. Mech. Solids 23, No. 3, 279--293 (2018; Zbl 1404.74158) Full Text: DOI OpenURL
Wang, Fei; Wei, Huayi Virtual element method for simplified friction problem. (English) Zbl 06971567 Appl. Math. Lett. 85, 125-131 (2018). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{F. Wang} and \textit{H. Wei}, Appl. Math. Lett. 85, 125--131 (2018; Zbl 06971567) Full Text: DOI OpenURL
Gaddam, Sharat; Gudi, Thirupathi Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. (English) Zbl 1448.65229 Comput. Methods Appl. Math. 18, No. 2, 223-236 (2018). MSC: 65N30 65N15 65N12 65K15 35B45 PDF BibTeX XML Cite \textit{S. Gaddam} and \textit{T. Gudi}, Comput. Methods Appl. Math. 18, No. 2, 223--236 (2018; Zbl 1448.65229) Full Text: DOI arXiv OpenURL
Christof, Constantin; Meyer, Christian A note on a priori \(L^p\)-error estimates for the obstacle problem. (English) Zbl 1442.65352 Numer. Math. 139, No. 1, 27-45 (2018). MSC: 65N30 65N15 65K15 PDF BibTeX XML Cite \textit{C. Christof} and \textit{C. Meyer}, Numer. Math. 139, No. 1, 27--45 (2018; Zbl 1442.65352) Full Text: DOI OpenURL
Gustafsson, Tom; Stenberg, Rolf; Videman, Juha On finite element formulations for the obstacle problem – mixed and stabilised methods. (English) Zbl 1380.65114 Comput. Methods Appl. Math. 17, No. 3, 413-429 (2017). MSC: 65K15 49J40 49M25 PDF BibTeX XML Cite \textit{T. Gustafsson} et al., Comput. Methods Appl. Math. 17, No. 3, 413--429 (2017; Zbl 1380.65114) Full Text: DOI OpenURL
Gustafsson, Tom; Stenberg, Rolf; Videman, Juha Mixed and stabilized finite element methods for the obstacle problem. (English) Zbl 1378.65135 SIAM J. Numer. Anal. 55, No. 6, 2718-2744 (2017). MSC: 65K15 49J40 49M15 PDF BibTeX XML Cite \textit{T. Gustafsson} et al., SIAM J. Numer. Anal. 55, No. 6, 2718--2744 (2017; Zbl 1378.65135) Full Text: DOI arXiv OpenURL
Wachsmuth, Gerd Conforming approximation of convex functions with the finite element method. (English) Zbl 1385.65043 Numer. Math. 137, No. 3, 741-772 (2017). Reviewer: Ctirad Matonoha (Prague) MSC: 65K10 90C59 49J20 49M37 90C25 PDF BibTeX XML Cite \textit{G. Wachsmuth}, Numer. Math. 137, No. 3, 741--772 (2017; Zbl 1385.65043) Full Text: DOI OpenURL
Bozorgnia, Farid; Valdman, Jan A FEM approximation of a two-phase obstacle problem and its a posteriori error estimate. (English) Zbl 1369.65143 Comput. Math. Appl. 73, No. 3, 419-432 (2017). MSC: 65N30 65N15 65K15 PDF BibTeX XML Cite \textit{F. Bozorgnia} and \textit{J. Valdman}, Comput. Math. Appl. 73, No. 3, 419--432 (2017; Zbl 1369.65143) Full Text: DOI arXiv OpenURL
Porwal, Kamana Discontinuous Galerkin methods for a contact problem with Tresca friction arising in linear elasticity. (English) Zbl 1381.74207 Appl. Numer. Math. 112, 182-202 (2017). MSC: 74S05 65N30 65K15 65N15 74B05 35Q74 PDF BibTeX XML Cite \textit{K. Porwal}, Appl. Numer. Math. 112, 182--202 (2017; Zbl 1381.74207) Full Text: DOI OpenURL
Alnashri, Yahya; Droniou, Jérôme Gradient schemes for the Signorini and the obstacle problems, and application to hybrid mimetic mixed methods. (English) Zbl 1368.65101 Comput. Math. Appl. 72, No. 11, 2788-2807 (2016). MSC: 65K15 65N15 PDF BibTeX XML Cite \textit{Y. Alnashri} and \textit{J. Droniou}, Comput. Math. Appl. 72, No. 11, 2788--2807 (2016; Zbl 1368.65101) Full Text: DOI OpenURL
Dond, Asha K.; Gudi, Thirupathi; Nataraj, Neela A nonconforming finite element approximation for optimal control of an obstacle problem. (English) Zbl 1351.65044 Comput. Methods Appl. Math. 16, No. 4, 653-666 (2016). MSC: 65K15 49J40 49M25 PDF BibTeX XML Cite \textit{A. K. Dond} et al., Comput. Methods Appl. Math. 16, No. 4, 653--666 (2016; Zbl 1351.65044) Full Text: DOI OpenURL
Gudi, Thirupathi; Porwal, Kamana A \(C^0\) interior penalty method for a fourth-order variational inequality of the second kind. (English) Zbl 1339.65088 Numer. Methods Partial Differ. Equations 32, No. 1, 36-59 (2016). Reviewer: Bülent Karasözen (Ankara) MSC: 65K15 49J40 74M10 74M15 49M25 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, Numer. Methods Partial Differ. Equations 32, No. 1, 36--59 (2016; Zbl 1339.65088) Full Text: DOI OpenURL
Gudi, Thirupathi; Porwal, Kamana A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. (English) Zbl 1327.65239 J. Comput. Appl. Math. 292, 257-278 (2016). MSC: 65N30 65N15 65N12 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, J. Comput. Appl. Math. 292, 257--278 (2016; Zbl 1327.65239) Full Text: DOI OpenURL
Zeng, Yuping; Chen, Jinru; Wang, Feng Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities. (English) Zbl 1443.65088 Comput. Math. Appl. 69, No. 8, 760-770 (2015). MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Comput. Math. Appl. 69, No. 8, 760--770 (2015; Zbl 1443.65088) Full Text: DOI OpenURL
Olguín, Mariela; Tarzia, Domingo A. Numerical analysis of a distributed optimal control problem governed by an elliptic variational inequality. (English) Zbl 1337.49053 Int. J. Differ. Equ. 2015, Article ID 407930, 7 p. (2015). MSC: 49M25 49J40 65K15 65N30 PDF BibTeX XML Cite \textit{M. Olguín} and \textit{D. A. Tarzia}, Int. J. Differ. Equ. 2015, Article ID 407930, 7 p. (2015; Zbl 1337.49053) Full Text: DOI arXiv OpenURL
Brenner, Susanne C.; Davis, Christopher B.; Sung, Li-yeng A partition of unity method for the obstacle problem of simply supported Kirchhoff plates. (English) Zbl 1342.74177 Griebel, Michael (ed.) et al., Meshfree methods for partial differential equations VII. Selected contributions based on the presentations at the 7th international workshop, Bonn, Germany, September 9–11, 2013. Cham: Springer (ISBN 978-3-319-06897-8/hbk; 978-3-319-06898-5/ebook). Lecture Notes in Computational Science and Engineering 100, 23-41 (2015). MSC: 74S30 74K20 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., Lect. Notes Comput. Sci. Eng. 100, 23--41 (2015; Zbl 1342.74177) Full Text: DOI OpenURL
Drouet, Guillaume; Hild, Patrick Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. (English) Zbl 1320.65172 SIAM J. Numer. Anal. 53, No. 3, 1488-1507 (2015). MSC: 65N30 74M15 74S05 35Q74 35J86 35B45 65K15 PDF BibTeX XML Cite \textit{G. Drouet} and \textit{P. Hild}, SIAM J. Numer. Anal. 53, No. 3, 1488--1507 (2015; Zbl 1320.65172) Full Text: DOI HAL OpenURL
Of, G.; Phan, T. X.; Steinbach, O. An energy space finite element approach for elliptic Dirichlet boundary control problems. (English) Zbl 1311.49069 Numer. Math. 129, No. 4, 723-748 (2015). MSC: 49M25 65N30 93C20 PDF BibTeX XML Cite \textit{G. Of} et al., Numer. Math. 129, No. 4, 723--748 (2015; Zbl 1311.49069) Full Text: DOI Link OpenURL
Brenner, Susanne C.; Davis, Christopher B.; Sung, Li-yeng A partition of unity method for a class of fourth order elliptic variational inequalities. (English) Zbl 1425.65070 Comput. Methods Appl. Mech. Eng. 276, 612-626 (2014). MSC: 65K15 49J40 65K10 65N30 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., Comput. Methods Appl. Mech. Eng. 276, 612--626 (2014; Zbl 1425.65070) Full Text: DOI OpenURL
Banz, Lothar; Stephan, Ernst P. \(hp\)-adaptive IPDG/TDG-FEM for parabolic obstacle problems. (English) Zbl 1350.65064 Comput. Math. Appl. 67, No. 4, 712-731 (2014). MSC: 65K10 49J20 49M15 65K15 PDF BibTeX XML Cite \textit{L. Banz} and \textit{E. P. Stephan}, Comput. Math. Appl. 67, No. 4, 712--731 (2014; Zbl 1350.65064) Full Text: DOI OpenURL
Maischak, Matthias; Krebs, Andreas; Stephan, Ernst P. Quasi-optimal degree distribution for a quadratic programming problem arising from the \(p\)-version finite element method for a one-dimensional obstacle problem. (English) Zbl 1331.90049 Discrete Appl. Math. 164, Part 1, 200-209 (2014). MSC: 90C20 90C59 PDF BibTeX XML Cite \textit{M. Maischak} et al., Discrete Appl. Math. 164, Part 1, 200--209 (2014; Zbl 1331.90049) Full Text: DOI OpenURL
Harasim, Petr; Valdman, Jan Verification of functional a posteriori error estimates for obstacle problem in 2D. (English) Zbl 1312.49035 Kybernetika 50, No. 6, 978-1002 (2014). MSC: 49M25 49J40 65K15 65L60 74M15 74S05 74K05 PDF BibTeX XML Cite \textit{P. Harasim} and \textit{J. Valdman}, Kybernetika 50, No. 6, 978--1002 (2014; Zbl 1312.49035) Full Text: arXiv Link OpenURL
Brenner, Susanne C.; Davis, Christopher B.; Sung, Li-yeng A partition of unity method for the displacement obstacle problem of clamped Kirchhoff plates. (English) Zbl 1293.74424 J. Comput. Appl. Math. 265, 3-16 (2014). MSC: 74S30 74K20 65K15 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., J. Comput. Appl. Math. 265, 3--16 (2014; Zbl 1293.74424) Full Text: DOI OpenURL
Banz, Lothar; Stephan, Ernst P. A posteriori error estimates of \(hp\)-adaptive IPDG-FEM for elliptic obstacle problems. (English) Zbl 1288.65098 Appl. Numer. Math. 76, 76-92 (2014). MSC: 65K15 49J40 49M25 PDF BibTeX XML Cite \textit{L. Banz} and \textit{E. P. Stephan}, Appl. Numer. Math. 76, 76--92 (2014; Zbl 1288.65098) Full Text: DOI OpenURL
Steinbach, O. Boundary element methods for variational inequalities. (English) Zbl 1291.65193 Numer. Math. 126, No. 1, 173-197 (2014). Reviewer: Hans Benker (Merseburg) MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{O. Steinbach}, Numer. Math. 126, No. 1, 173--197 (2014; Zbl 1291.65193) Full Text: DOI Link OpenURL
Gudi, Thirupathi; Porwal, Kamana A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. (English) Zbl 1305.65231 Math. Comput. 83, No. 286, 579-602 (2014). Reviewer: Werner H. Schmidt (Greifswald) MSC: 65N30 65N15 65K15 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, Math. Comput. 83, No. 286, 579--602 (2014; Zbl 1305.65231) Full Text: DOI OpenURL
Gwinner, Joachim \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. (English) Zbl 1290.74041 J. Comput. Appl. Math. 254, 175-184 (2013). MSC: 74S05 74M15 65N30 PDF BibTeX XML Cite \textit{J. Gwinner}, J. Comput. Appl. Math. 254, 175--184 (2013; Zbl 1290.74041) Full Text: DOI OpenURL
Brenner, Susanne C.; Sung, Li-yeng; Zhang, Hongchao; Zhang, Yi A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. (English) Zbl 1290.65108 J. Comput. Appl. Math. 254, 31-42 (2013). MSC: 65N30 65K15 65N15 74S05 74K20 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., J. Comput. Appl. Math. 254, 31--42 (2013; Zbl 1290.65108) Full Text: DOI OpenURL
Harasim, Petr; Valdman, Jan Verification of functional a posteriori error estimates for obstacle problem in \(1D\). (English) Zbl 1278.49035 Kybernetika 49, No. 5, 738-754 (2013). MSC: 49M25 49J40 65K15 65L60 34B15 74K05 74M15 74S05 PDF BibTeX XML Cite \textit{P. Harasim} and \textit{J. Valdman}, Kybernetika 49, No. 5, 738--754 (2013; Zbl 1278.49035) Full Text: arXiv Link OpenURL
Antonietti, Paola F.; Beirão da Veiga, Lourenço; Verani, Marco A mimetic discretization of elliptic obstacle problems. (English) Zbl 1271.65136 Math. Comput. 82, No. 283, 1379-1400 (2013). MSC: 65N30 35J25 35R35 65N12 PDF BibTeX XML Cite \textit{P. F. Antonietti} et al., Math. Comput. 82, No. 283, 1379--1400 (2013; Zbl 1271.65136) Full Text: DOI OpenURL
Antonietti, Paola F.; Bigoni, Nadia; Verani, Marco Mimetic discretizations of elliptic control problems. (English) Zbl 1273.65079 J. Sci. Comput. 56, No. 1, 14-27 (2013). Reviewer: Hans Benker (Merseburg) MSC: 65K10 PDF BibTeX XML Cite \textit{P. F. Antonietti} et al., J. Sci. Comput. 56, No. 1, 14--27 (2013; Zbl 1273.65079) Full Text: DOI OpenURL
Carstensen, C.; Merdon, C. A posteriori error estimator competition for conforming obstacle problems. (English) Zbl 1364.65243 Numer. Methods Partial Differ. Equations 29, No. 2, 667-692 (2013). Reviewer: Elena Resmerita (Linz) MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{C. Carstensen} and \textit{C. Merdon}, Numer. Methods Partial Differ. Equations 29, No. 2, 667--692 (2013; Zbl 1364.65243) Full Text: DOI OpenURL
Knees, Dorothee; Schröder, Andreas Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints. (English) Zbl 1255.35068 Math. Methods Appl. Sci. 35, No. 15, 1859-1884 (2012). MSC: 35B65 35J88 74A45 74M15 65N30 65N12 PDF BibTeX XML Cite \textit{D. Knees} and \textit{A. Schröder}, Math. Methods Appl. Sci. 35, No. 15, 1859--1884 (2012; Zbl 1255.35068) Full Text: DOI OpenURL
Brenner, Susanne C.; Sung, Li-Yeng; Zhang, Yi Finite element methods for the displacement obstacle problem of clamped plates. (English) Zbl 1250.74023 Math. Comput. 81, No. 279, 1247-1262 (2012). Reviewer: Jan Lovíšek (Bratislava) MSC: 74S05 74M15 74K20 65N30 65N12 49J40 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., Math. Comput. 81, No. 279, 1247--1262 (2012; Zbl 1250.74023) Full Text: DOI OpenURL
Li, Yuan; An, Rong Semi-discrete stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure. (English) Zbl 1432.76164 Numer. Math. 117, No. 1, 1-36 (2011). MSC: 76M10 76D05 65M60 35K86 35Q30 65M15 PDF BibTeX XML Cite \textit{Y. Li} and \textit{R. An}, Numer. Math. 117, No. 1, 1--36 (2011; Zbl 1432.76164) Full Text: DOI OpenURL
Maischak, Matthias; Krebs, Andreas; Stephan, Ernst P. A quadratic programming problem arising from the \(p\)-version for obstacle problems. (English) Zbl 1274.90253 Haouari, M. (ed.) et al., ISCO 2010. International symposium on combinatorial optimization. Papers based on the presentations at the symposium, Hammamet, Tunesia, March 24–26, 2010. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 36, 923-930 (2010). MSC: 90C20 PDF BibTeX XML Cite \textit{M. Maischak} et al., Electron. Notes Discrete Math. 36, 923--930 (2010; Zbl 1274.90253) Full Text: Link OpenURL
Chen, Yanping; Huang, Yunqing; Liu, Wenbin; Yan, Ningning Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. (English) Zbl 1203.49042 J. Sci. Comput. 42, No. 3, 382-403 (2010). MSC: 49M25 65N15 65N30 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Sci. Comput. 42, No. 3, 382--403 (2010; Zbl 1203.49042) Full Text: DOI OpenURL
Of, Günther; Phan, Thanh Xuan; Steinbach, Olaf Boundary element methods for Dirichlet boundary control problems. (English) Zbl 1219.49021 Math. Methods Appl. Sci. 33, No. 18, 2187-2205 (2010). MSC: 49K40 49K20 65K15 65N38 35Q93 35J25 PDF BibTeX XML Cite \textit{G. Of} et al., Math. Methods Appl. Sci. 33, No. 18, 2187--2205 (2010; Zbl 1219.49021) Full Text: DOI Link OpenURL
Repin, S. I. Estimates of deviations from exact solutions of variational inequalities based upon Payne-Weinberger inequality. (English. Russian original) Zbl 1205.35130 J. Math. Sci., New York 157, No. 6, 874-884 (2009); translation from Probl. Mat. Anal. 39, 81-90 (2009). MSC: 35J86 49J40 49K40 PDF BibTeX XML Cite \textit{S. I. Repin}, J. Math. Sci., New York 157, No. 6, 874--884 (2009; Zbl 1205.35130); translation from Probl. Mat. Anal. 39, 81--90 (2009) Full Text: DOI OpenURL
Gwinner, Joachim On the \(p\)-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral contact and given friction. (English) Zbl 1171.74047 Appl. Numer. Math. 59, No. 11, 2774-2784 (2009). MSC: 74S15 74M15 74M10 PDF BibTeX XML Cite \textit{J. Gwinner}, Appl. Numer. Math. 59, No. 11, 2774--2784 (2009; Zbl 1171.74047) Full Text: DOI OpenURL
Repin, S.; Valdman, J. Functional a posteriori error estimates for problems with nonlinear boundary conditions. (English) Zbl 1146.65054 J. Numer. Math. 16, No. 1, 51-81 (2008). MSC: 65K10 49J40 49M25 PDF BibTeX XML Cite \textit{S. Repin} and \textit{J. Valdman}, J. Numer. Math. 16, No. 1, 51--81 (2008; Zbl 1146.65054) Full Text: DOI OpenURL
Maischak, Matthias; Stephan, Ernst P. Adaptive \(hp\)-versions of boundary element methods for elastic contact problems. (English) Zbl 1191.74054 Comput. Mech. 39, No. 5, 597-607 (2007). Reviewer: Ján Sládek (Bratislava) MSC: 74S15 74M15 74B05 65N15 65N12 PDF BibTeX XML Cite \textit{M. Maischak} and \textit{E. P. Stephan}, Comput. Mech. 39, No. 5, 597--607 (2007; Zbl 1191.74054) Full Text: DOI OpenURL
Ryoo, Cheon Seoung An approach to the numerical verification of solutions for obstacle problems. (English) Zbl 1133.49013 Comput. Math. Appl. 53, No. 5, 842-850 (2007). MSC: 49J40 90C33 47H10 47J20 PDF BibTeX XML Cite \textit{C. S. Ryoo}, Comput. Math. Appl. 53, No. 5, 842--850 (2007; Zbl 1133.49013) Full Text: DOI OpenURL
Zhang, Yongmin Convergence of free boundaries in discrete obstacle problems. (English) Zbl 1116.65080 Numer. Math. 106, No. 1, 157-164 (2007). Reviewer: Yves Cherruault (Paris) MSC: 65K10 49J40 PDF BibTeX XML Cite \textit{Y. Zhang}, Numer. Math. 106, No. 1, 157--164 (2007; Zbl 1116.65080) Full Text: DOI OpenURL
Krebs, Andreas; Stephan, Ernst P. A \(p\)-version finite element method for nonlinear elliptic variational inequalities in 2D. (English) Zbl 1133.65042 Numer. Math. 105, No. 3, 457-480 (2007). Reviewer: Viorel Arnăutu (Iaşi) MSC: 65K10 49J40 49M15 PDF BibTeX XML Cite \textit{A. Krebs} and \textit{E. P. Stephan}, Numer. Math. 105, No. 3, 457--480 (2007; Zbl 1133.65042) Full Text: DOI OpenURL
Jiang, Bin Convergence analysis of \(P_{1}\) finite element method for free boundary problems on non-overlapping subdomains. (English) Zbl 1120.76325 Comput. Methods Appl. Mech. Eng. 196, No. 1-3, 371-378 (2006). MSC: 76M10 76S05 65N15 PDF BibTeX XML Cite \textit{B. Jiang}, Comput. Methods Appl. Mech. Eng. 196, No. 1--3, 371--378 (2006; Zbl 1120.76325) Full Text: DOI OpenURL
Cheng, Xiao-Liang; Xue, Lian On the error estimate of finite difference method for the obstacle problem. (English) Zbl 1133.65039 Appl. Math. Comput. 183, No. 1, 416-422 (2006). Reviewer: Viorel Arnăutu (Iaşi) MSC: 65K10 49J40 49M25 PDF BibTeX XML Cite \textit{X.-L. Cheng} and \textit{L. Xue}, Appl. Math. Comput. 183, No. 1, 416--422 (2006; Zbl 1133.65039) Full Text: DOI OpenURL
Oujja, Rachid A new method for cavitation approximation in some general lubrication devices. (English) Zbl 1102.76050 Appl. Math. Comput. 181, No. 2, 1645-1656 (2006). MSC: 76M25 76D08 65N12 PDF BibTeX XML Cite \textit{R. Oujja}, Appl. Math. Comput. 181, No. 2, 1645--1656 (2006; Zbl 1102.76050) Full Text: DOI OpenURL
Suttmeier, F. T. On computational methods for variational inequalities. Consistent error estimation of FE-approximation. (English) Zbl 1109.74366 Comput. Mech. 35, No. 6, 401-408 (2005). MSC: 74S05 74M15 65K10 49J40 PDF BibTeX XML Cite \textit{F. T. Suttmeier}, Comput. Mech. 35, No. 6, 401--408 (2005; Zbl 1109.74366) Full Text: DOI OpenURL
Solberg, Jerome M.; Papadopoulos, Panayiotis An analysis of dual formulations for the finite element solution of two-body contact problems. (English) Zbl 1093.74058 Comput. Methods Appl. Mech. Eng. 194, No. 25-26, 2734-2780 (2005). MSC: 74S05 74M15 PDF BibTeX XML Cite \textit{J. M. Solberg} and \textit{P. Papadopoulos}, Comput. Methods Appl. Mech. Eng. 194, No. 25--26, 2734--2780 (2005; Zbl 1093.74058) Full Text: DOI OpenURL
Maischak, Matthias; Stephan, Ernst P. Adaptive \(hp\)-versions of BEM for Signorini problems. (English) Zbl 1114.74062 Appl. Numer. Math. 54, No. 3-4, 425-449 (2005). MSC: 74S15 65N38 74M15 PDF BibTeX XML Cite \textit{M. Maischak} and \textit{E. P. Stephan}, Appl. Numer. Math. 54, No. 3--4, 425--449 (2005; Zbl 1114.74062) Full Text: DOI OpenURL
Ben Belgacem, F.; Renard, Y.; Slimane, L. A mixed formulation for the Signorini problem in nearly incompressible elasticity. (English) Zbl 1086.74037 Appl. Numer. Math. 54, No. 1, 1-22 (2005). MSC: 74S05 74M15 PDF BibTeX XML Cite \textit{F. Ben Belgacem} et al., Appl. Numer. Math. 54, No. 1, 1--22 (2005; Zbl 1086.74037) Full Text: DOI HAL OpenURL
Slimane, Leila; Bendali, Abderrahmane; Laborde, Patrick Mixed formulations for a class of variational inequalities. (English) Zbl 1100.65059 M2AN, Math. Model. Numer. Anal. 38, No. 1, 177-201 (2004). Reviewer: Nicolae Pop (Baia Mare) MSC: 65K10 74M15 74S05 74M10 49J40 49M15 PDF BibTeX XML Cite \textit{L. Slimane} et al., M2AN, Math. Model. Numer. Anal. 38, No. 1, 177--201 (2004; Zbl 1100.65059) Full Text: DOI Numdam EuDML OpenURL
Xue, Lian; Cheng, Xiao-Liang An algorithm for solving the obstacle problems. (English) Zbl 1082.74038 Comput. Math. Appl. 48, No. 10-11, 1651-1657 (2004). Reviewer: Nazim Idris Mahmudov (Mersin) MSC: 74M15 74G15 PDF BibTeX XML Cite \textit{L. Xue} and \textit{X.-L. Cheng}, Comput. Math. Appl. 48, No. 10--11, 1651--1657 (2004; Zbl 1082.74038) Full Text: DOI OpenURL
Bartels, S.; Carstensen, C. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. (English) Zbl 1063.65050 Numer. Math. 99, No. 2, 225-249 (2004). Reviewer: Muhammad Aslam Noor (Islamabad) MSC: 65K10 49J40 49M15 PDF BibTeX XML Cite \textit{S. Bartels} and \textit{C. Carstensen}, Numer. Math. 99, No. 2, 225--249 (2004; Zbl 1063.65050) Full Text: DOI Link OpenURL
Alvarez, Sixto J.; Oujja, Rachid A new numerical approach of a lubrication free boundary problem. (English) Zbl 1089.76015 Appl. Math. Comput. 148, No. 2, 393-405 (2004). MSC: 76D08 76M10 76M25 PDF BibTeX XML Cite \textit{S. J. Alvarez} and \textit{R. Oujja}, Appl. Math. Comput. 148, No. 2, 393--405 (2004; Zbl 1089.76015) Full Text: DOI OpenURL
Ryoo, Cheon Seoung; Nakao, Mitsuhiro T. Numerical verification of solutions for obstacle problems. (English) Zbl 1041.65056 J. Comput. Appl. Math. 161, No. 2, 405-416 (2003). Reviewer: Igor V. Konnov (Kazan) MSC: 65K10 49J40 49M15 PDF BibTeX XML Cite \textit{C. S. Ryoo} and \textit{M. T. Nakao}, J. Comput. Appl. Math. 161, No. 2, 405--416 (2003; Zbl 1041.65056) Full Text: DOI OpenURL
Ben Belgacem, F.; Renard, Y. Hybrid finite element methods for the Signorini problem. (English) Zbl 1023.74043 Math. Comput. 72, No. 243, 1117-1145 (2003). MSC: 74S05 74M15 PDF BibTeX XML Cite \textit{F. Ben Belgacem} and \textit{Y. Renard}, Math. Comput. 72, No. 243, 1117--1145 (2003; Zbl 1023.74043) Full Text: DOI OpenURL
Belhachmi, Z.; Ben Belgacem, F. Quadratic finite element approximation of the Signorini problem. (English) Zbl 1112.74446 Math. Comput. 72, No. 241, 83-104 (2003). MSC: 74M15 35J85 65N30 74S05 PDF BibTeX XML Cite \textit{Z. Belhachmi} and \textit{F. Ben Belgacem}, Math. Comput. 72, No. 241, 83--104 (2003; Zbl 1112.74446) Full Text: DOI OpenURL
Hild, Patrick; Laborde, Patrick Quadratic finite element methods for unilateral contact problems. (English) Zbl 1062.74050 Appl. Numer. Math. 41, No. 3, 401-421 (2002). MSC: 74S05 74M15 PDF BibTeX XML Cite \textit{P. Hild} and \textit{P. Laborde}, Appl. Numer. Math. 41, No. 3, 401--421 (2002; Zbl 1062.74050) Full Text: DOI OpenURL
Zhang, Yongmin Multilevel projection algorithm for solving obstacle problems. (English) Zbl 0985.65076 Comput. Math. Appl. 41, No. 12, 1505-1513 (2001). Reviewer: Vicenţiu D.Rădulescu (Craiova) MSC: 65K10 49M15 49J40 35R35 35R45 PDF BibTeX XML Cite \textit{Y. Zhang}, Comput. Math. Appl. 41, No. 12, 1505--1513 (2001; Zbl 0985.65076) Full Text: DOI OpenURL
Hild, Patrick The mortar finite element method for Bingham fluids. (English) Zbl 0990.76042 M2AN, Math. Model. Numer. Anal. 35, No. 1, 153-164 (2001). MSC: 76M10 76A05 76M30 65K10 PDF BibTeX XML Cite \textit{P. Hild}, M2AN, Math. Model. Numer. Anal. 35, No. 1, 153--164 (2001; Zbl 0990.76042) Full Text: DOI Numdam EuDML OpenURL
Liu, Wenbin; Yan, Ningning A posteriori error estimates for some model boundary control problems. (English) Zbl 0963.65072 J. Comput. Appl. Math. 120, No. 1-2, 159-173 (2000). Reviewer: Rudolf Tracht (Essen) MSC: 65K10 49J20 49M15 PDF BibTeX XML Cite \textit{W. Liu} and \textit{N. Yan}, J. Comput. Appl. Math. 120, No. 1--2, 159--173 (2000; Zbl 0963.65072) Full Text: DOI OpenURL
Wang, Lieheng On the duality methods for the contact problem in elasticity. (English) Zbl 0942.74077 Comput. Methods Appl. Mech. Eng. 167, No. 3-4, 275-282 (1998). MSC: 74S05 74M15 74G10 PDF BibTeX XML Cite \textit{L. Wang}, Comput. Methods Appl. Mech. Eng. 167, No. 3--4, 275--282 (1998; Zbl 0942.74077) Full Text: DOI OpenURL
Nedoma, Jiří Finite element approximation of a coupled contact Stefan-like problem arising from the time discretization in deformation theory of thermo-plasticity. (English) Zbl 0891.73066 J. Comput. Appl. Math. 82, No. 1-2, 313-331 (1997). MSC: 74S05 74C99 74L05 80A22 74A55 74M15 PDF BibTeX XML Cite \textit{J. Nedoma}, J. Comput. Appl. Math. 82, No. 1--2, 313--331 (1997; Zbl 0891.73066) Full Text: DOI OpenURL
Han, Weimin Computable error estimates for linearization and numerical solution of obstacle problems. (English) Zbl 0822.65041 J. Comput. Appl. Math. 55, No. 1, 69-79 (1994). Reviewer: M.Yu.Kokurin (Yoshkar-Ola) MSC: 65K10 49M15 49J20 PDF BibTeX XML Cite \textit{W. Han}, J. Comput. Appl. Math. 55, No. 1, 69--79 (1994; Zbl 0822.65041) Full Text: DOI OpenURL
Liu, W. B.; Barrett, John W. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities. (English) Zbl 0820.65073 RAIRO, Modélisation Math. Anal. Numér. 28, No. 6, 725-744 (1994). Reviewer: I.N.Katz (St.Louis) MSC: 65N30 65K10 65N15 49M15 65N12 35J70 35J85 49J40 PDF BibTeX XML Cite \textit{W. B. Liu} and \textit{J. W. Barrett}, RAIRO, Modélisation Math. Anal. Numér. 28, No. 6, 725--744 (1994; Zbl 0820.65073) Full Text: DOI EuDML OpenURL
Nedoma, Jiří Finite-element analysis of contact problems in thermoelasticity. The semi-coercive case. (English) Zbl 0804.73069 J. Comput. Appl. Math. 50, No. 1-3, 411-423 (1994). MSC: 74S05 74A55 74M15 80A20 PDF BibTeX XML Cite \textit{J. Nedoma}, J. Comput. Appl. Math. 50, No. 1--3, 411--423 (1994; Zbl 0804.73069) Full Text: DOI OpenURL
Liu, W. B.; Barrett, John W. Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality. (English) Zbl 0824.65044 Adv. Comput. Math. 1, No. 2, 223-239 (1993). MSC: 65K10 65M60 65M15 49M15 49J40 35K85 PDF BibTeX XML Cite \textit{W. B. Liu} and \textit{J. W. Barrett}, Adv. Comput. Math. 1, No. 2, 223--239 (1993; Zbl 0824.65044) Full Text: DOI OpenURL
Spann, W. On the boundary element method for the Signorini problem of the Laplacian. (English) Zbl 0798.65106 Numer. Math. 65, No. 3, 337-356 (1993). Reviewer: A.Pomp (Stuttgart) MSC: 65N38 65N15 65K10 35J20 35J05 49J40 49M15 PDF BibTeX XML Cite \textit{W. Spann}, Numer. Math. 65, No. 3, 337--356 (1993; Zbl 0798.65106) Full Text: DOI EuDML OpenURL
Noor, Muhammad Aslam; Noor, Khalida Inayat; Rassias, Themistocles M. Some aspects of variational inequalities. (English) Zbl 0788.65074 J. Comput. Appl. Math. 47, No. 3, 285-312 (1993). Reviewer: M.Yu.Kokurin (Yoshkar-Ola) MSC: 65K10 47J20 49M05 49J40 49J27 PDF BibTeX XML Cite \textit{M. A. Noor} et al., J. Comput. Appl. Math. 47, No. 3, 285--312 (1993; Zbl 0788.65074) Full Text: DOI OpenURL