×

zbMATH — the first resource for mathematics

Equivalent system of equations of the generalized theory of tapered shells. (English. Russian original) Zbl 0920.73247
Int. Appl. Mech. 32, No. 10, 806-812 (1996); translation from Prikl. Mekh., Kiev 32, No. 10, 74-80 (1996).
MSC:
74K15 Membranes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Fizmatgiz, Moscow (1961).
[2] I. N. Vekua, ”Theory of thin, tapered shells of variable thickness,” Tr. Tbil. Mat. In-ta,30, 3–103 (1965). · Zbl 0166.20904
[3] I. N. Vekua, ”On two methods of constructing a consistent shell theory,” Proc. First All-Union School on Theory and Numerical Methods of Constructing Plates and Shells Gegechkori, Georgian SSR (1974). · Zbl 0306.49028
[4] A. N. Guz’, I. S. Chernyshenko, Val. N. Chekhov, et al., Methods of Constructing Shells Weakened by Perforations [in Russian], Nauk. Dumka, Kiev (1980). · Zbl 0524.73072
[5] B. L. Pelekh, Theory of Shells with Finite Shear Modulus [in Russian], Nauk. Dumka, Kiev (1973).
[6] I. Yu. Khoma, ”A method of determining the temperature field in plates of variable thickness,” Dop. Akad. Nauk UkrRSR. Ser. A, No. 9, 829–833 (1974). · Zbl 0296.35042
[7] I. Yu. Khoma, Generalized Theory of Anisotropic Shells [in Russian], Nauk. Dumka, Kiev (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.