×

Composition duality methods for quasistatic evolution elastoviscoplastic variational problems. (English) Zbl 1371.74056

Summary: Composition duality methods for dual quasistatic evolution elastoviscoplastic variational problems are studied. Dual evolution mixed analysis is performed, as well as corresponding primal static mixed analysis. For multi-constitutive modeling and parallel computing, macro-hybrid variational formulations are further considered at the continuous level.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
47J20 Variational and other types of inequalities involving nonlinear operators (general)
49N15 Duality theory (optimization)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Halphen, B.; NGuyen, Q. S., Sur les matériaux standard généralisés, J. Mécanique, 14, 39-63 (1975) · Zbl 0308.73017
[2] Le Tallec, P., Numerical Analysis of Viscoelastic Problems (1990), Masson: Masson Paris · Zbl 0718.73091
[3] Moreau, J.-J., Functionnelles sous-differentiables, C. R. Acad. Sci. Paris, 279 A, 4117-4119 (1963) · Zbl 0137.31401
[4] Moreau, J.-J., Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France, 93, 273-299 (1965) · Zbl 0136.12101
[5] Duvaut, G.; Lions, J.-L., Les Inéquations en Méchanique et en Physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[6] Ekeland, I.; Temam, R., Analyse Convexe et Problèmes Variationnels (1974), Dunod/Gauthier Villars: Dunod/Gauthier Villars Paris · Zbl 0281.49001
[7] Panagiotopoulos, P. D., Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functions (1985), Birkhäuser: Birkhäuser Boston · Zbl 0579.73014
[8] Alduncin, G., Subdifferential and variational formulations of boundary value problems, Comput. Methods Appl. Mech. Engrg., 72, 173-186 (1989) · Zbl 0675.73014
[9] Alduncin, G., Composition duality methods for evolution mixed variational inclusions, Nonlinear Anal. Hybrid Systems, 1, 336-363 (2007) · Zbl 1117.49029
[10] Alduncin, G., Composition duality methods for mixed variational inclusions, Appl. Math. Optim., 52, 311-348 (2005) · Zbl 1207.49018
[11] Prager, W.; Hodge, P., The Theory of Perfectly Plastic Solids (1951), John Wiley: John Wiley New York · Zbl 0044.39803
[12] Perzyna, P., Fundamental problems in viscoplasticity, Rec. Adv. Appl. Mech., 9, 243-377 (1966)
[13] Alduncin, G., Augmented Lagrangian methods for the quasistatic viscoelastic two-body contact problem with friction, (Curnier, A., Contact Mechanics (1992), PPUR: PPUR Lausanne), 337-359
[14] Han, W.; Reddy, B. D., Computational plasticity: the variational basis and numerical analysis, Comput. Mech. Adv., 2, 283-400 (1995) · Zbl 0847.73078
[15] Han, W.; Reddy, B. D., Plasticity: Mathematical Theory and Numerical Analysis (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0926.74001
[16] Ebobisse, F.; Reddy, B. D., Some mathematical problems in perfect plasticity, Comput. Methods Appl. Mech. Engrg., 193, 5071-5094 (2004) · Zbl 1112.74324
[17] Blanchard, D.; Le Tallec, P., Numerical analysis of the equations small strains quasistatic elastoviscoplasticity, Numer. Math., 50, 147-169 (1986) · Zbl 0613.73028
[18] Alduncin, G., Variational formulations of nonlinear constrained boundary value problems, Nonlinear Anal., 72, 2639-2644 (2010) · Zbl 1187.35057
[19] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag Berlin
[20] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linèaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[21] Alduncin, G., Composition duality principles for evolution mixed variational inclusions, Appl. Math. Lett., 20, 734-740 (2007) · Zbl 1354.49034
[22] Alduncin, G., Composition duality principles for mixed variational inequalities, Math. Comput. Modelling, 41, 639-654 (2005) · Zbl 1080.47049
[23] Moreau, J.-J., Functionnelles convexes. Séminaire sur les Équations aux dérivées partielles (1967), Collège de France: Collège de France Paris
[24] Ernst, E.; Théra, M., On the necessity of the Moreau-Rockafellar-Robinson qualification condition in Banach spaces, Math. Program. Ser. B, 117, 149-161 (2009) · Zbl 1158.90008
[25] Yosida, K., Functional Analysis (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0217.16001
[26] Alduncin, G., Macro-hybrid variational formulations of constrained boundary value problems, Numer. Funct. Anal. Optim., 28, 751-774 (2007) · Zbl 1128.35011
[27] Ding, X. P.; Xia, F. Q., A new class of completely generalized quasi-variational inclusions in Banach spaces, J. Comput. Appl. Math., 147, 369-383 (2002) · Zbl 1009.49011
[28] Temam, R., A generalized Norton-Hoff model and the Prandt-Reuss law of plasticity, Arch. Ration. Mech. Anal., 95, 137-183 (1986) · Zbl 0615.73035
[29] Rochdi, M.; Sofonea, M., On frictionless contact between two elastic-viscoplastic bodies, Quart. J. Mech. Appl. Math., 50, 481-496 (1997) · Zbl 0886.73059
[30] Han, W.; Sofonea, M., Numerical analysis of a frictionless contact problem for elastic-viscoplastic materials, Comput. Methods Appl. Mech. Engrg., 190, 179-191 (2000) · Zbl 1004.74071
[31] Sofonea, M.; Renon, N.; Shillor, M., Stress formulation for frictionless contact of an elastic-perfectly-plastic body, Appl. Anal., 83, 1157-1170 (2004) · Zbl 1111.74031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.