×

Toward a classification of compact complex homogeneous spaces. (English) Zbl 1050.22025

The author considers: \(M\) a compact complex homogeneous manifold, \(G\) a connected complex Lie group acting almost effectively, holomorphically and transitively on \(M,\Gamma\) a discrete cocompact subgroup of \(G\) such that \(M=G/ \Gamma\), \(R\) the radical of \(G\). The following beautiful and important theorems which give a classification of compact complex homogeneous spaces are proved. Theorem A. If \(S\) is a Levi subgroup of \(G\), then any simple factor of \(S\) which acts nontrivially on \(R\) is of type \(A_\ell\).
Theorem B. Let \(G,\Gamma, S\), and \(R\) be as in Theorem A. \(S_1\) (respectively \(S_2)\) be the normal subgroup of \(S\) such that each simple factor of \(S_1\) (respectively of \(S_2)\) acts trivially (respectively nontrivially) on \(R\). Then, up to a finite covering, \(G/ \Gamma\) is a torus fiber bundle over a product \(S_1/ \Gamma_1\times S_2R/ \Gamma_2C^0\), where \(C_0\) is the identity component of the center \(C\) of \(G\) and \(\Gamma_1\) (respectively \(\Gamma_2)\) is a discrete subgroup of \(S_1\) (respectively \(S_2 R/C^0)\). In particular, \(S_2\) has only factors of type \(A_\ell\).
Theorem C. Let \(M\) be a compact complex homogeneous space. Then \(M\), up to a finite covering, is a torus bundle over \(S_1/H_1\times S_2 R/H_2\) with \(S_1\), \(S_2\) semisimple and \(R\) being the radical of \(S_2 R\) such that each factor of \(S_2\) acts nontrivially on \(R\). If \(J_1= N_{S_1} (H_1^0)\), \(J_2=N_{S_2R} (H_2^0)\), then \(J_2/H_1^0\) is semisimple and \(H_2^0\cap S_2\) is nilpotent, \(J_2\) has only simple factors of type \(A_\ell\), which are not in \(H_2\). Moreover, each simple factor of \(S_2\) is a classical Lie group and each simple factor of \(J_2\) acts nontrivially on \(R/R\cap H\).
A classification of the data, for each type of classical Lie algebra, is given in the lists from Theorem D.
Theorem E. The reduced primitive compact complex homogeneous spaces, up to actions of some torus, are isogenous on the Lie algebra level to one of following 12 cases: \[ \begin{alignedat}{3} & (1)\;k_1A_\ell^{a,1}\times k_2 a^a_{1, \ell}, \;& (7)\quad & k_1A^{b,1} \times k_2a_1^b,\\ & (2)\;k_1 A_\ell^{a, 2} \times k_2a_{2,\ell}^a, \;& (8)\quad & k_1 A^{b,2}\times k_2 D^4 \times k_3a_2^b,\\ &(3)\;k_1A_\ell^{a,3}\times k_2a^a_{3, \ell}, \;& (9)\quad & k_1A^{b,3} \times k_2D^1 \times k_3D^3\times k_4 d_1,\\ &(4)\;k_1 A_{\ell}^{a,4} \times k_2a^a_{4,\ell}, \;& (10)\quad & k_1 B^2\times k_2b,\\ &(5)\;k_1 A_\ell^{a,5} \times k_2B^3\times k_3a_5^a \times (\prod_i A_{\ell_i}^{a,6}), \;& \;(11)\quad & k_1C\times k_2c,\\ &(6)\;\left( \prod^*_i A^{a,7}_{n_i}\right) \times\left( \prod^*_jB^1_{n_j} \right) \times \left( \prod^*_kA^{b,4}_{n_\ell} \right)\times\left( \prod^*_\ell a^a_{7, n_\ell} \right), \;& (12)\quad & k_1D^2 \times k_2d_2,\end{alignedat} \] where \(k_i\), \(i=1,2,3,4\), are nonnegative integers and \(kB\) means \(k\) copies of \(B\).
Theorem F. Any reduced space of 1-step is isogenous to \(T\times L\) with \(T\) a torus and \(L\) is, up to an action of a torus, isogenous (i.e., \(\leq)\) to (up to a finite covering, this induces an embedding) a product of a parallelizable manifold and several reduced primitive compact complex homogeneous spaces such that each projection of the image is onto.
Theorem G. Any reduced space \(M\) of 1-step is in an isogeny class \(\geq\) a product \(M_0\) of a parallelizable manifold and some complete reduced primitive homogeneous spaces. In particular, \(M\) is a homogeneous \(M_0\) bundle over a torus.
Theorem H. Any reduced space \(M\) is in an isogeny class \(\geq\) a product \(M_0\) of a parallelizable manifold and some primary spaces. In particular, \(M\) is a homogeneous \(M_0\) bundle over a torus.
Reviewer: A. Neagu (Iaşi)

MSC:

22F30 Homogeneous spaces
57S15 Compact Lie groups of differentiable transformations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akhiezer, D. N., A bound for the dimension of the automorphism group of a compact complex homogeneous space, Soobshch. Akad. Nauk Gruz. SSR, 110, 469-472 (1983), (in Russian) · Zbl 0579.32049
[2] Akhiezer, D. N., Lie Group Actions in Complex Analysis, (Aspects Math., vol. E27 (1995)) · Zbl 0309.22008
[3] Bourbaki, N., Algebra II (1981), Masson: Masson Paris, Chapitres 4-7
[4] Bourbaki, N., Algebra II (1958), Hermann: Hermann Paris, Chapitre 8 · Zbl 0098.02501
[5] Borel, A., Kählerian coset spaces of semisimple Lie groups, Proc. Nat. Acad. Sci. USA, 40, 1147-1151 (1954) · Zbl 0058.16002
[6] Borel, A.; Remmert, R., Über Kompakte Homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145, 429-439 (1962) · Zbl 0111.18001
[7] Chernousov, V., On the Hasse principle for groups of type \(E_8\), Dokl. Acad. Nauk SSSR, 306, 1059-1063 (1989)
[8] Dorfmeister, J.; Guan, Z., Fine structure of reductive pseudo-Kählerian spaces, Geom. Dedicata, 39, 321-338 (1991) · Zbl 0739.53040
[9] Dorfmeister, J.; Guan, Z., Pseudo-Kählerian homogeneous spaces admitting a reductive transformation group of automorphisms, Math. Z., 209, 89-100 (1992) · Zbl 0761.32017
[10] Dorfmeister, J.; Nakajima, K., The fundamental conjecture for homogeneous Kähler manifolds, Acta Math., 161, 23-70 (1988) · Zbl 0662.32025
[11] Guan, D., A splitting theorem for compact complex homogeneous spaces with a symplectic structure, Geom. Dedicata, 63, 217-225 (1996) · Zbl 0860.53018
[12] Guan, D., Classification of compact complex homogeneous spaces with invariant volumes, Trans. Amer. Math. Soc.. Trans. Amer. Math. Soc., Electron. Res. Announc. Amer. Math. Soc., 3, 90-92 (1997), see also · Zbl 0883.53046
[13] D. Guan, Toward a classification of compact complex homogeneous spaces II, in preparation; D. Guan, Toward a classification of compact complex homogeneous spaces II, in preparation
[14] Hano, J., Equivariant projective immersion of a complex coset space with non-degenerate canonical Hermitian form, Scripta Math., 29, 125-139 (1973) · Zbl 0259.32009
[15] Hano, J., On compact complex coset spaces of reductive Lie groups, Proc. Amer. Math. Soc., 15, 159-163 (1964) · Zbl 0129.15701
[16] Hochschild, G., The Structure of Lie Groups (1965), Holden-Day: Holden-Day Oakland, CA · Zbl 0131.02702
[17] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, (Grad. Texts in Math., vol. 9 (1972), Springer-Verlag: Springer-Verlag New York) · Zbl 0254.17004
[18] Iwamoto, T., Density properties of complex Lie groups, Osaka J. Math., 23, 859-865 (1986) · Zbl 0627.22007
[19] Iwamoto, T., Algebraic groups and co-compact subgroups of complex linear groups, Mem. Fac. Sci. Kyushu Univ. Ser. A, 42, 1-7 (1988) · Zbl 0657.22009
[20] Kneser, M., Lectures on Galois Cohomology of Classical Groups (1969), Tata Instute of Fundamental Research: Tata Instute of Fundamental Research Bombay · Zbl 0246.14008
[21] Koszul, J. L., Sur la form Hermitienne canonique des spaces homogenes complexes, Canad. J. Math., 7, 562-576 (1955) · Zbl 0066.16104
[22] Matsushima, Y., Sur les espaces homogenes Kähleriens d’un groupe de Lie réductif, Nagoya Math. J., 11, 53-60 (1957) · Zbl 0099.37501
[23] Otte, M.; Potters, J., Beispiele homogener Mannigfaltigkeiten, Manuscripta Math., 10, 117-127 (1973) · Zbl 0264.32013
[24] Platonov, V.; Rapinchuk, A., Algebraic Groups and Number Theory, (Pure Appl. Math., vol. 139 (1994)) · Zbl 0806.11002
[25] Raghunathan, M. S., Discrete Subgroups of Lie Groups, (Ergeb. Math. Grenzgeb., vol. 68 (1972)) · Zbl 0254.22005
[26] Selberg, A., On discontinuous groups in higher-dimensional symmetric spaces, (Contributions to Function Theory (1960), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay), 147-164
[27] Scharlau, W., Quadratic and Hermitian Forms, (Grundlehren Math. Wiss., vol. 270 (1985), Springer-Verlag) · Zbl 0194.35104
[28] Snow, D.; Winkelmann, J., Compact complex homogeneous manifolds with large automorphism groups, Invent. Math., 134, 139-144 (1998)
[29] Tits, J., Espaces homogènes complexes compacts, Comment. Math. Helv., 37, 111-120 (1962) · Zbl 0108.36302
[30] Tits, J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math., 247, 196-220 (1971) · Zbl 0227.20015
[31] Wang, H.-C., Complex parallelizable manifolds, Proc. Amer. Math. Soc., 5, 771-776 (1954) · Zbl 0056.15403
[32] Wang, H.-C., Closed manifolds with homogeneous complex structure, Amer. J. Math., 76, 1-32 (1954) · Zbl 0055.16603
[33] Winkelmann, J., Complex analytic geometry of complex parallelizable manifolds, Mém. Soc. Math. Fr. (N.S.), 72-73 (1998) · Zbl 0918.32015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.