Relative index theorems and supersymmetric scattering theory. (English) Zbl 0663.58032

We discuss supersymmetric scattering theory and employ Krein’s theory of spectral shift functions to investigate supersymmetric scattering systems. This is the basis for the derivation of relative index theorems on some classes of open manifolds. As an example we discuss the de Rham complex for obstacles in \({\mathbb{R}}^ N\) and asymptotically flat manifolds. It is shown that the absolute or relative Euler characteristic of an obstacle in \({\mathbb{R}}^ N\) may be obtained from scattering data for the Laplace operator on forms with absolute or relative boundary conditions respectively. In the case of asymptotically flat manifolds we obtain the Chern-Gauss-Bonnet theorem for the \(L^ 2\)-Euler characteristic.


58J20 Index theory and related fixed-point theorems on manifolds
58Z05 Applications of global analysis to the sciences
81T60 Supersymmetric field theories in quantum mechanics
81U99 Quantum scattering theory
Full Text: DOI


[1] Alvarez-Gaumé, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys.90, 161-173 (1983) · Zbl 0528.58034
[2] Alves, N.A., Aratyn, H., Zimerman, A.H.: ? dependence of the Witten index. Phys. Lett. B173, 327-331 (1986)
[3] Andrianov, A.A., Borisov, N.V., Ioffe, M.V.: Nonstationary approach to scattering theory for supersymmetric Hamiltonians in quantum mechanics and supersymmetry of nuclear interactions. Preprint FUB-HEP/86-6, Phys. Lett. B181, 141-144 (1986) and Theor. Mat. Fiz. (to appear) (in Russian)
[4] Aronszajn, N.: A unique analytic continuation theorem for elliptic partial differential equations or inequaltiies of second order. J. Math. Pure Appl.36, 235-250 (1957) · Zbl 0084.30402
[5] Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque. Soc. Math. France32-33, 43-72 (1961) · Zbl 0323.58015
[6] Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math.19, 279-330 (1973) · Zbl 0257.58008
[7] Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Phil. Soc.77, 43-69 (1975) · Zbl 0297.58008
[8] Barbasch, D., Moscovici, H.:L 2-index and the Selberg trace formula. J. Funct. Anal.53, 151-201 (1983) · Zbl 0537.58039
[9] Baumgärtel, H., Wollenberger, M.: Mathematical scattering theory. Basel, Boston, Stuttgart: Birkhäuser 1983
[10] Beth, E., Uhlenbeck, G.E.: Quantum theory of the non-ideal gas. Part II. Behaviour at low temperatures. Physica4, 915-924 (1937) · JFM 63.1416.02
[11] Bollé, D., Gesztesy, F., Grosse, H., Simon, B.: Krein’s spectral shift function and Fredholm determinants as efficient methods to study supersymmetric quantum mechanics. Preprint, June, 1986 · Zbl 0626.46062
[12] Bott, R., Seeley, R.: Some remarks on the paper of Callias. Commun. Math. Phys.62, 235-245 (1978) · Zbl 0409.58019
[13] Boyanovsky, D., Blankenbecler, R.: Fractional indices in supersymmetric theories. Phys. Rev. D30, 1821-1824 (1984)
[14] Brüning, J., Seeley, R.: An index theorem for first order regular operators. Preprint Univ. Augsburg 1986 · Zbl 0664.58035
[15] Brüning, J., Seeley, R.: Index theory for regular singular operators and applications (to appear) · Zbl 0664.58035
[16] Buslaev, V.S.: Scattered plane waves, spectral asymptotics and trace formulas in exterior domains. Dokl. Akad. Nauk SSSR197, 999-1002 (1971) · Zbl 0224.47023
[17] Buslaev, V.S.: On the asymptotic behavior of the spectral characteristics of exterior problems for the Schrödinger operator. Izv. Akad. Nauk SSSR Ser. Mat.39, No. 1 (1975) [Math. USSR Izv.9, 139-223 (1975)] · Zbl 0324.35006
[18] Callias, C.: Axial anomalies and index theorems on open spaces. Commun. Math. Phys.62, 213-234 (1978) · Zbl 0416.58024
[19] Chavel, I.: Eigenvalues in Riemannian geometry. London: Academic Press 1984 · Zbl 0551.53001
[20] Conner, P.E.: The Neumann’s problem for differential forms on Riemannian manifolds. Mem. Am. Math. Soc.20 (1956) · Zbl 0070.31404
[21] Cotta-Ramusino, P., Krüger, W., Schrader, R.: Quantum scattering by external metrics and Yang-Mills potentials. Ann. Inst. H. Poincaré31, 43-71 (1979) · Zbl 0441.35055
[22] Davies, E.B.: On Enss’ approach to scattering theory. Duke Math. J.47, 171-185 (1980) · Zbl 0434.47014
[23] D’Olivo, J.C., Urrutia, L.F., Zertuche, F.: Study of a three-dimensional quantum-mechanical model with nucleon-nucleon-type interaction. Phys. Rev. D32, 2174-2189 (1985)
[24] Enss, V.: Geometric methods in spectral and scattering theory of Schrödinger operators. Rigorous Atomic and Molecular Physics. Velo, G., Wightman, A.S. (eds.). Nato advanced study Inst. Ser., Ser. B Physics, Vol. 74, Erice, 1980. New York, London: Plenum Press 1981
[25] Fedosov, B.V.: Analytic formulas for index of elliptic operators. Tr. Mosk. Mat. O30, 159-240 (1974) (in Russian) · Zbl 0349.58006
[26] Friedan, D., Windey, P.: Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly. Nucl. Phys. B235, 395-416 (1984)
[27] Friedman, A.: Partial differential equations of parabolic type. Englewood Cliffs, New York: Prentice Hall 1964 · Zbl 0144.34903
[28] Gaffney, M.P.: The heat equation method of Milgram and Rosenbloom for open Riemannian manifolds. Ann. Math.60, 458-466 (1954) · Zbl 0057.07501
[29] Gesztesy, F.: Scattering theory for one-dimensional systems with nontrivial spatial asymptotics. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer (to appear) · Zbl 0602.35090
[30] Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Wilmington: Publish or Perish 1984 · Zbl 0565.58035
[31] Gromov, N., Lawson, H.B., Jr.: Positive scalar curvature and the Dirac Operator on complete Riemannian manifolds. Publ. Math. IHES58, 295-408 (1983) · Zbl 0538.53047
[32] Guillopé, L.: Asymptotique de la phase de diffusion pour l’operateur de Schrödinger avec potentiel. C.R. Acad. Sci. Paris293, Ser. I, 601-603 (1981) · Zbl 0487.35073
[33] Jensen, A., Kato, T.: Asymptotic behaviour of the scattering phase for exterior domain. Commun. Partial Differ. Equations3, 1165-1195 (1978) · Zbl 0419.35067
[34] Kac, M.: Can one hear the shape of a drum? Am. Math. Mon.73, 1-23 (1966) · Zbl 0139.05603
[35] Kato, T.: Wave operators and unitary equivalence. Pac. J. Math.15, 171-180 (1965) · Zbl 0125.34902
[36] Kato, T.: Scattering theory with two Hilbert spaces. J. Funct. Anal.1, 342-369 (1967) · Zbl 0171.12303
[37] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0435.47001
[38] Kodaira, K.: Harmonic fields in Riemannian manifolds. Ann. Math.50, 587-665 (1949) · Zbl 0034.20502
[39] Majda, A., Taylor, M.: Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems. Commun. Partial Differ. Equations2 (4), 395-438 (1977) · Zbl 0373.35055
[40] Majda, A., Ralston, R.: An analogue of Weyl’s theory for unbounded domains. I. Duke Math. J.45, 183-196 (1978); II. ibid45, 513-536 (1978); III. ibid45, 725-731 (1979) · Zbl 0408.35069
[41] Müller, W.: Manifolds with cusps of rank one. Lecture Notes in Mathematics, Vol. 1244. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0632.58001
[42] Niemi, A.J., Semenoff, G.W.: Index theorems on open infinite manifolds. Nucl. Phys. B269, 131-159 (1986)
[43] Paquet, L.: Méthode de separation des variables et calcul du spectre d’operateurs sur les formes differentielles. Bull. Sci. Math., 2e ser.105, 85-112 (1981) · Zbl 0473.58003
[44] Perry, P.A.: Mellin transforms and scattering theory. I. Short range potentials. Duke Math. J.47, 187-193 (1980) · Zbl 0445.47009
[45] Ray, D.B., Singer, I.M.:R-Torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145-210 (1971) · Zbl 0239.58014
[46] Schrader, R.: High energy behaviour for nonrelativistic scattering by stationary external metrics and Yang Mills potentials. Z. Phys. C4, 27-36 (1980)
[47] Spanier, E.H.: Algebraic topology. New York: McGraw-Hill 1966 · Zbl 0145.43303
[48] Stern, M.A.:L 2-index theorems on warped products. Dissertation, Princeton Univ. 1984
[49] Taubes, C.H.: Stability in Yang-Mills theories. Commun. Math. Phys.91, 235-263 (1983) · Zbl 0524.58020
[50] Vilenkin, N.Ja.: Functions speciales et theorie de la representation des groups. Paris: Dunod 1969
[51] Werner, P.: Spectral properties of the Laplace operator with respect to electric and magnetic boundary conditions. J. Math. Anal. Appl.92, 1-65 (1983) · Zbl 0527.35061
[52] Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B202, 253-316 (1982)
[53] Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom.17, 661-692 (1982) · Zbl 0499.53056
[54] Donnelly, H.: Essential spectrum and heat kernel estimates (preprint) · Zbl 0634.58031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.