×

On maps with unstable singularities. (English) Zbl 1013.57016

Let \(X\) be a compact \(n\)-polyhedron and \(Q\) a PL \(m\)-manifold. A map \(f: X\rightarrow Q\) is called realizable or discretely realizable if it can be \(\epsilon\)-approximated by embeddings \(f_\epsilon :X \rightarrow Q\) for each \(\epsilon > 0\). \(f\) is isotopically realizable if \(f\) and \(f_\epsilon\) can be related by pseudo-isotopy [W. Holsztyński, Proc. Am. Math. Soc. 27, 598-602 (1971; Zbl 0211.26501)]. Furthermore, \(f:X \rightarrow Q\) is called continuously realizable if for each \(\epsilon > 0\) there exists a \(\delta >0\) such that each embedding \(g_\delta :X\rightarrow Q\) which is \(\delta\)-close to \(f\) can be taken onto \(f\) by an \(\epsilon\)-pseudo-isotopy. Clearly, if \(f:X\rightarrow Q\) is continuously realizable, then it is isotopically realizable. The paper also treats the fourth notion of realizability called concordant realizability. The author treats the question when does discrete realizability imply isotopic realizability? The proof of the obtained result is done via continuous realizability. The main results on this line are the following:
If \(f:X \rightarrow Q\) is discretely realizable, then it is isotopicaly realizable if
(1) \(m > 2n, (m,n)\) different from \((1,3)\);
(2) \(m > 3(n+1)/2\) and \(\Delta(f) = \{(x,y) \mid f(x) = f(y)\}\) has a \(\mathbb{Z}_2\)-equivariant mapping cylinder neighbourhood in \(X\times X\);
(3) \(m > n + 2\) and \(f\) is the composition of a PL map and a topological embedding.
For \((m,n) = (3,6)\) a map discretely realizable may not be isotopically realizable. The paper contains a series of examples illustrating different relations between the treated notions of realizability. Furthermore, there are results in the smooth category when \(X,Q\), and \(f\) belong to that category. Also, one can find a series of results related to this topic.

MSC:

57N37 Isotopy and pseudo-isotopy
57R45 Singularities of differentiable mappings in differential topology
57N35 Embeddings and immersions in topological manifolds
57Q35 Embeddings and immersions in PL-topology
57N45 Flatness and tameness of topological manifolds
57N75 General position and transversality
57Q37 Isotopy in PL-topology
57Q55 Approximations in PL-topology
57Q60 Cobordism and concordance in PL-topology

Citations:

Zbl 0211.26501

References:

[1] Ageev, S. M.; Repovš, D.; Ščepin, E. V., On softness of Dranishnikov’s map, Trudy Mat. Inst. Steklova. Trudy Mat. Inst. Steklova, Proc. Steklov Inst. Math., 212, 3-27 (1996), English translation · Zbl 0898.54016
[2] Akhmet’ev, P. M., On isotopic and discrete realizations of mappings of \(n\)-sphere to Euclidean space, Mat. Sb.. Mat. Sb., Math. USSR-Sb., 187, 7, 951-980 (1996), English translation · Zbl 0871.58010
[3] Akhmet’ev, P. M., The generalized Daverman problem, (Trudy Mezhd. Mat. Konf. k 90-letiju L.S. Pontryagina (2000), VINITI: VINITI Moscow), 1-11, (in Russian) · Zbl 1001.54018
[4] Akhmet’ev, P. M., Embeddings of compacta, stable homotopy groups of spheres and singularity theory, Uspekhi Mat. Nauk. Uspekhi Mat. Nauk, Russ. Math. Surv., 55, 3, 405-462 (2000), English translation · Zbl 0972.57013
[5] Akhmet’ev, P. M.; Melikhov, S. A., On isotopic realizability of continuous mappings, (Viro, O. Ya.; Netsvetaev, N. Yu., Geometry and Topology, Part 5:. Geometry and Topology, Part 5:, Proc. Rokhlin Memorial. Geometry and Topology, Part 5:. Geometry and Topology, Part 5:, Proc. Rokhlin Memorial, Zap. Nauch. Sem. POMI, 267 (2000)), 53-87, (in Russian); Erratum, Zap. Nauch. Sem. POMI, to appear · Zbl 1039.57014
[6] Akhmet’ev, P. M.; Repovš, D.; Skopenkov, A. B., Obstructions to approximating maps of surfaces into \(R^4\) by embeddings, Topology Appl., 123 (2002), to appear · Zbl 1003.57036
[7] Berkowitz, H. W.; Dancis, J., PL approximations of embeddings and isotopies of polyhedra in the metastable range, (Cantrell, J. C.; Edwards, C. H., Topology of Manifolds (1970), Markham: Markham Chicago, IL), 341-352 · Zbl 0284.57010
[8] Bing, R. H., A homogeneous indecomposable plane continuum, Duke Math. J., 15, 729-742 (1948) · Zbl 0035.39103
[9] Bing, R. H., A simple closed curve that pierces no disk, J. Math. Pure Appl., 35, 337-343 (1956) · Zbl 0070.40203
[10] Bing, R. H., Vertical general position, (Geometric Topology. Geometric Topology, Lecture Notes in Math., 438 (1975), Springer: Springer Berlin), 16-42 · Zbl 0331.57008
[11] Bing, R. H.; Kister, J. M., Taming complexes in hyperplanes, Duke Math. J., 31, 491-512 (1964) · Zbl 0124.16701
[12] Bryant, J. L., Approximating embeddings of polyhedra in codimension three, Trans. Amer. Math. Soc., 170, 85-95 (1972) · Zbl 0259.57007
[13] Bryant, J. L., Triangulation and general position of PL diagrams, Topology Appl., 34, 211-233 (1990) · Zbl 0694.57009
[14] Bryant, J. L.; Seebeck, C. L., Locally nice embeddings in codimension 3, Bull. Amer. Math. Soc., 74, 378-380 (1968) · Zbl 0169.26202
[15] Bryant, J. L.; Seebeck, C. L., Locally nice embeddings in codimension 3, Quart. J. Math., 21, 265-272 (1970) · Zbl 0199.26703
[16] Capell, S. E.; Shaneson, J. L., Close codimension two embeddings of even-dimensional manifolds, Amer. J. Math., 97, 733-740 (1975) · Zbl 0318.57034
[17] Černavskij, A. V., Topological embeddings of polyhedra in euclidean spaces, Dokl. Akad. Nauk. Dokl. Akad. Nauk, Soviet Math. Dokl., 6, 1606-1610 (1965), English translation · Zbl 0141.40801
[18] Černavskij, A. V., Topological embeddings of manifolds, Dokl. Akad. Nauk. Dokl. Akad. Nauk, Soviet Math. Dokl., 10, 4, 1247-1249 (1969), English translation
[19] Černavskij, A. V., Local contractibility of the homeomorphism group of a manifold, Mat. Sb.. Mat. Sb., Math. USSR-Sb., 8, 3, 287-333 (1969), English translation · Zbl 0193.51501
[20] Černavskij, A. V., Piece-wise linear approximation of embeddings of cells and spheres in codimensions greater than two; Supplement: Piece-wise linear approximation of embeddings of manifolds in codimensions greater than two, Mat. Sb.. Mat. Sb., Mat. Sb.. Mat. Sb.. Mat. Sb., Mat. Sb., Math. USSR-Sb.. Mat. Sb.. Mat. Sb., Mat. Sb.. Mat. Sb.. Mat. Sb., Mat. Sb., Math. USSR-Sb., Math. USSR-Sb., 11, 465-466 (1970), English translation · Zbl 0216.45204
[21] Conelly, R., Unknotting close polyhedra in codimension 3, (Cantrell, J. C.; Edwards, C. H., Topology of Manifolds (1970), Markham: Markham Chicago, IL), 384-388
[22] Conner, P. E.; Floyd, E. E., Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc., 66, 416-441 (1960) · Zbl 0106.16301
[23] Daverman, R. J., Decompositions of Manifolds (1986), Academic Press: Academic Press Orlando, FL · Zbl 0608.57002
[24] Dranishnikov, A. N.; Repovš, D.; Ščepin, E. V., On intersections of compacta of complementary dimension in Euclidean space, Topology Appl., 38, 237-253 (1991) · Zbl 0719.54015
[25] Edwards, R. D., The equivalence of close piecewise-linear embeddings, Gen. Topology Appl., 5, 147-180 (1975) · Zbl 0314.57009
[26] Edwards, R. D., Approximating codimension ⩾\(3 σ\)-compacta with locally homotopically unknotted embeddings, Topology Appl., 24, 95-122 (1986) · Zbl 0604.57013
[27] Edwards, R. D.; Kirby, R. C., Deformations of spaces of embeddings, Ann. of Math., 93, 63-88 (1971) · Zbl 0214.50303
[28] Eilenberg, S.; Steenrod, N. E., Foundations of Algebraic Topology (1952), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0047.41402
[29] Ferry, S., Remarks on Steenrod homology, (Novikov Conjecture, Index Theorems and Rigidity (Vol. 2). Novikov Conjecture, Index Theorems and Rigidity (Vol. 2), London Math. Soc. Lecture Note Series, 227 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 149-166 · Zbl 0954.55005
[30] Fox, R. H., A quick trip through knot theory, (Fort, M. K., Topology of 3-Manifolds and Related Topics (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ), 120-167 · Zbl 1246.57002
[31] Fox, R. H.; Harrold, O. G., The Wilder arcs, (Fort, M. K., Topology of 3-Manifolds and Related Topics (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ), 184-186 · Zbl 1246.57013
[32] Gray, B. I., Spaces of the same \(n\)-type for all \(n\), Topology, 5, 241-243 (1966) · Zbl 0149.20102
[33] Haefliger, A., Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36, 47-82 (1961) · Zbl 0102.38603
[34] Haefliger, A., Knotted \((4k\)−1)-spheres in \(6k\)-space, Ann. of Math., 75, 452-466 (1962) · Zbl 0105.17407
[35] Haefliger, A., Plongements différentiables dans le domain stable, Comment. Math. Helv., 37, 155-176 (1962-63) · Zbl 0186.27302
[36] Harlap, A. E., Local homology and cohomology, homological dimension and generalized manifolds, Mat. Sb.. Mat. Sb., Math. USSR-Sb., 25, 3, 323-349 (1975), English translation · Zbl 0325.57002
[37] Harris, L. S., Intersections and embeddings of polyhedra, Topology, 8, 1-26 (1969) · Zbl 0186.27401
[38] Hirsch, M. W., Differential Topology (1976), Springer: Springer New York · Zbl 0121.18004
[39] Holsztyński, W., Approximation by homeomorphisms and solution of P. Blass problem on pseudo-isotopy, Proc. Amer. Math. Soc., 27, 3, 598-602 (1971) · Zbl 0211.26501
[40] Hudson, J. F.P., Concordance, isotopy and diffeotopy, Ann. of Math., 91, 425-448 (1970) · Zbl 0202.54602
[41] Hudson, J. F.P.; Lickorish, W. B.R., Extending piecewise-linear concordances, Quart. J. Math., 22, 1-12 (1971) · Zbl 0219.57011
[42] Kearton, C.; Lickorish, W. B.R., Piecewise-linear critical levels and collapsing, Trans. Amer. Math. Soc., 170, 415-423 (1972) · Zbl 0248.57007
[43] Keesling, J. E.; Wilson, D. C., Embedding \(T^n\)-like continua in Euclidean space, Topology Appl., 21, 241-249 (1985) · Zbl 0583.54008
[44] Keldyš, L. V., Topological embeddings and pseudoisotopy, Dokl. Akad. Nauk. Dokl. Akad. Nauk, Soviet Math. Dokl., 7, 6, 1078-1082 (1966), English translation · Zbl 0152.22403
[45] Keldyš, L. V., Topological embeddings into a manifold and pseudoisotopy, Mat. Sb.. Mat. Sb., Amer. Math. Soc. Transl., 84, 4, 253-275 (1969), English translation · Zbl 0191.22302
[46] Keldyš, L. V., Topological Embeddings in Euclidean Space. Topological Embeddings in Euclidean Space, Trudy Mat. Inst. Steklova, 81 (1968), American Mathematical Society: American Mathematical Society Providence, RI, English translation
[47] Keldyš, L. V., Pseudoisotopy for certain locally knotted simple arcs in \(E^3\), Dokl. Akad. Nauk. Dokl. Akad. Nauk, Soviet Math. Dokl., 12, 1, 1247-1249 (1971), English translation
[48] Kirby, R. C., Smoothing locally flat imbeddings of differentiable manifolds, Topology, 6, 207-220 (1967) · Zbl 0152.22401
[49] Kirby, R. C., Lectures on Triangulations of Manifolds (1969), UCLA Press: UCLA Press Los Angeles, CA
[50] Kirby, R. C.; Siebenmann, L. C., Foundational Essays on Topological Manifolds, Smoothing and Triangulations. Foundational Essays on Topological Manifolds, Smoothing and Triangulations, Ann. Math. Studies, 88 (1977), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0361.57004
[51] Kojima, S.; Yamasaki, M., Some new invariants of links, Invent. Math., 54, 3, 213-228 (1979) · Zbl 0404.57004
[52] Kuiper, N. H.; Lashof, R. K., Microbundles and bundles, Invent. Math., 1, 1-17 (1966) · Zbl 0142.21901
[53] Lashof, R., Embedding spaces, Illinois J. Math., 20, 144-154 (1976) · Zbl 0334.57017
[54] Lewis, W., The pseudo-arc, Bol. Soc. Mat. Mexicana, 5, 25-77 (1999) · Zbl 0954.54018
[55] Lickorish, W. B.R., The piecewise-linear unknotting of cones, Topology, 4, 67-91 (1965) · Zbl 0138.19003
[56] Lusk, E., Level-preserving approximations and isotopies and homotopy groups of spaces of embeddings, Illinois J. Math., 18, 147-159 (1974) · Zbl 0281.57014
[57] Massey, W. S., Homology and Cohomology Theory (1978), Marcel Dekker: Marcel Dekker New York · Zbl 0377.55005
[58] Melikhov, S. A., (Singular) link concordance implies link homotopy in codimension ⩾3, Preprint, 1998; announce, Pseudo-homotopy implies homotopy for singular links of codimension ⩾3, Uspekhi Mat. Nauk. Uspekhi Mat. Nauk, Russ. Math. Surveys, 55, 3, 589-590 (2000), English translation · Zbl 1016.57018
[59] S.A. Melikhov, On isotopic realizability of maps factored through a hyperplane, Preprint; S.A. Melikhov, On isotopic realizability of maps factored through a hyperplane, Preprint · Zbl 1063.57022
[60] S.A. Melikhov, R.V. Mikhailov, Links modulo knots and the Isotopic Realization Problem Uspekhi Mat. Nauk 56 (2) (2001) 219-220; English translation, Russ. Math. Surveys, to appear; S.A. Melikhov, R.V. Mikhailov, Links modulo knots and the Isotopic Realization Problem Uspekhi Mat. Nauk 56 (2) (2001) 219-220; English translation, Russ. Math. Surveys, to appear · Zbl 1009.57033
[61] S.A. Melikhov, D. Repovš, A geometric filtration of links modulo knots, I, II, Preprint; S.A. Melikhov, D. Repovš, A geometric filtration of links modulo knots, I, II, Preprint
[62] Miller, R. T., Close isotopies on piecewise-linear manifolds, Trans. Amer. Math. Soc., 151, 597-628 (1970) · Zbl 0203.56204
[63] Miller, R. T., Approximating codimension three embeddings, Ann. of Math., 95, 406-416 (1972) · Zbl 0208.51801
[64] Miller, R. T., Fiber preserving equivalence, Trans. Amer. Math. Soc., 207, 241-268 (1975) · Zbl 0315.57013
[65] Miller, R. T., Mapping cylinder neighborhoods of some ANR’s, Ann. of Math., 103, 417-427 (1976) · Zbl 0322.57006
[66] Milnor, J., Isotopy of links, (Lefschetz, S.; Fox, R. H.; Spencer, D.; Tucker, J. W., Algebraic Geometry Topology: A Symposium in Honor of S. Lefschetz (1957), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 208-306 · Zbl 0080.16901
[67] Minc, P., Embedding of simplicial arcs into the plane, Topology Proc., 22, 305-340 (1997) · Zbl 0945.54027
[68] Quinn, F., Ends of maps, III: dimensions 4 and 5 (includes the annulus conjecture), J. Differential Geom., 17, 503-521 (1982) · Zbl 0533.57009
[69] Repovš, D.; Skopenkov, A. B., Embeddability and isotopy of polyhedra in Euclidean spaces, Trudy Mat. Inst. Steklova, 212, 163-178 (1996) · Zbl 0884.57020
[70] Repovš, D.; Skopenkov, A. B., A deleted product criterion for approximability of maps by embeddings, Topology Appl., 87, 1-19 (1998) · Zbl 0934.57024
[71] Repovš, D.; Skopenkov, A. B.; Ščepin, E. V., On uncountable collections of continua and their span, Colloq. Math., 69, 289-296 (1995) · Zbl 0882.54030
[72] Repovš, D.; Skopenkov, A. B.; Ščepin, E. V., On embeddability of \(X×\(I\) into Euclidean space, Houston J. Math., 21, 1, 199-204 (1995) · Zbl 0856.57018
[73] Rourke, C. P., Embedded handle theory, concordance and isotopy, (Cantrell, J. C.; Edwards, C. H., Topology of Manifolds (1970), Markham: Markham Chicago, IL), 431-438 · Zbl 0281.57023
[74] Rourke, C. P.; Sanderson, B. J., Introduction to Piecewise-Linear Topology. Introduction to Piecewise-Linear Topology, Ergebn. der Math., 69 (1972), Springer: Springer New York · Zbl 0254.57010
[75] Ščepin, E. V.; Štan’ko, M. A., A spectral criterion for embeddability of compacta in Euclidean space, (Proc. Leningrad Internat. Topology Conf. (1983), Nauka: Nauka Leningrad), 135-142, (in Russian) · Zbl 0592.54019
[76] Segal, J.; Skopenkov, A. B.; Spież, S., Embeddings of polyhedra in \(R^m\) and the deleted product obstruction, Topology Appl., 85, 1-10 (1997)
[77] Siebenmann, L. C., Topological manifolds, (Proc. ICM Nice 1970, 2 (1971), Gauthier-Villars: Gauthier-Villars Paris), 133-163 · Zbl 0224.57001
[78] Siebenmann, L. C., Approximating cellular maps by homeomorphisms, Topology, 11, 271-294 (1972) · Zbl 0216.20101
[79] Siekłucki, K., Imbedding of mappings, Bull. Acad. Polon. Sci. (Math. Ser.), 16, 2, 87-93 (1968) · Zbl 0157.29604
[80] Siekłucki, K., Realization of mappings, Fund. Math., 65, 325-343 (1969) · Zbl 0197.49201
[81] Sikkema, C. D., Pseudo-isotopies of arcs and knots, Proc. Amer. Math. Soc., 31, 615-616 (1972) · Zbl 0231.55007
[82] Skopenkov, A. B., On the deleted product criterion for embeddability of manifolds in \(R^m\), Comment. Math. Helv., 72, 543-555 (1997) · Zbl 0905.57015
[83] A.B. Skopenkov, On the Haefliger-Hirsch-Wu invariants for embeddings and immersions, Preprint; A.B. Skopenkov, On the Haefliger-Hirsch-Wu invariants for embeddings and immersions, Preprint · Zbl 1012.57035
[84] Spież, S., On pairs of compacta with dim \((X×Y)\)<dim \(X\)+dim \(Y\), Fund. Math., 135, 127-145 (1990) · Zbl 0715.54029
[85] Spież, S.; Toruńczyk, H., Moving compacta in \(R^m\) apart, Topology Appl., 41, 193-204 (1991) · Zbl 0770.54034
[86] Stern, R. J., Classification theorems for parametrized families of smooth or piecewise linear manifold structures representing a submanifold, Illinois J. Math., 21, 1, 190-219 (1977) · Zbl 0342.57006
[87] Zeeman, E. C., Unknotting combinatorial balls, Ann. of Math., 78, 501-526 (1963) · Zbl 0122.17901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.