×

Ikeda’s conjecture on the period of the Duke-Imamoḡlu-Ikeda lift. (English) Zbl 1376.11038

Summary: Let \(k\) and \(n\) be positive even integers. For a cuspidal Hecke eigenform \(h\) in the Kohnen plus space of weight \(k-n/2+1/2\) for \(\varGamma_0(4),\) let \(I_n(h)\) be the Duke-Imamoḡlu-Ikeda lift of \(h\) in the space of cusp forms of weight \(k\) for \(\mathrm{Sp}_n(\mathbb{Z}),\) and \(f\) be the primitive form of weight \(2k-n\) for \(\mathrm{SL}_2(\mathbb{Z})\) corresponding to \(h\) under the Shimura correspondence. We then express the ratio \(\langle I_n(h), I_n(h) \rangle / \langle h, h \rangle\) of the period of \(I_n(h)\) to that of \(h\) in terms of special values of certain \(L\)-functions of \(f\). This proves the conjecture proposed by Ikeda concerning the period of the Duke-Imamoḡlu-Ikeda lift.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrianov A. N. , Quadratic forms and Hecke operators, Grundlehren der Mathematischen Wissenschaften 286 (Springer, Berlin, 1987). · Zbl 0613.10023 · doi:10.1007/978-3-642-70341-6
[2] DOI: 10.1007/BF02941505 · Zbl 0613.10026 · doi:10.1007/BF02941505
[3] DOI: 10.2969/jmsj/06441353 · Zbl 1276.11069 · doi:10.2969/jmsj/06441353
[4] Böcherer S. Sato F. , ’Rationality of certain formal power series related to local densities’, Comment. Math. Univ. St. Paul. 36 (1987) 53–86. · Zbl 0629.10018
[5] DOI: 10.1112/S0010437X06002466 · Zbl 1172.11015 · doi:10.1112/S0010437X06002466
[6] DOI: 10.1023/A:1026270423149 · Zbl 1047.11038 · doi:10.1023/A:1026270423149
[7] DOI: 10.1007/s002220050273 · Zbl 0924.11035 · doi:10.1007/s002220050273
[8] Furusawa M. , ’On Petersson norms for some liftings’, Math. Ann. 248 (1984) 543–548. · Zbl 0519.10020 · doi:10.1007/BF01455971
[9] Ibukiyama T. , ’On Jacobi forms and Siegel modular forms of half integral weights’, Comment. Math. Univ. St.Paul. 41 (1992) 109–124. · Zbl 0787.11015
[10] DOI: 10.1016/S0022-314X(03)00099-4 · Zbl 1053.11046 · doi:10.1016/S0022-314X(03)00099-4
[11] DOI: 10.1007/BF02941528 · Zbl 1073.11031 · doi:10.1007/BF02941528
[12] Ibukiyama T. Katsurada H. , ’Koecher–Maaß series for real analytic Siegel Eisenstein series’, Automorphic forms and zeta functions (World Scientific Publishing, Hackensack, NJ, 2006) 170–197. · Zbl 1112.11021 · doi:10.1142/9789812774415_0009
[13] DOI: 10.2307/2374973 · Zbl 0846.11028 · doi:10.2307/2374973
[14] DOI: 10.2307/3062143 · Zbl 0998.11023 · doi:10.2307/3062143
[15] DOI: 10.1215/S0012-7094-06-13133-2 · Zbl 1112.11022 · doi:10.1215/S0012-7094-06-13133-2
[16] Ikeda T. , ’On the lifting of hermitian modular forms’, Compos. Math. 144 (2008) 1107–1154. · Zbl 1155.11025 · doi:10.1112/S0010437X08003643
[17] DOI: 10.1070/SM1984v048n01ABEH002669 · Zbl 0542.10020 · doi:10.1070/SM1984v048n01ABEH002669
[18] DOI: 10.1353/ajm.1999.0013 · Zbl 1002.11039 · doi:10.1353/ajm.1999.0013
[19] DOI: 10.1007/s00209-007-0213-5 · Zbl 1173.11029 · doi:10.1007/s00209-007-0213-5
[20] DOI: 10.1080/10586458.2010.10129062 · Zbl 1206.11064 · doi:10.1080/10586458.2010.10129062
[21] Katsurada H. , ’Congruence between Duke–Imamo \(\bar {{\text{g}}}\) lu–Ikeda lifts and non-Duke–Imamo \(\bar {{\text{g}}}\) lu–Ikeda lifts’, Preprint, 2011, arXiv:1101.3377v1 [math.NT].
[22] DOI: 10.1007/s00209-013-1232-z · Zbl 1304.11036 · doi:10.1007/s00209-013-1232-z
[23] DOI: 10.1016/j.jnt.2007.07.006 · Zbl 1221.11123 · doi:10.1016/j.jnt.2007.07.006
[24] DOI: 10.4064/aa145-3-3 · Zbl 1214.11060 · doi:10.4064/aa145-3-3
[25] DOI: 10.4064/aa162-1-1 · Zbl 1322.11041 · doi:10.4064/aa162-1-1
[26] Kitaoka Y. , ’Dirichlet series in the theory of Siegel modular forms’, Nagoya Math. J. 95 (1984) 73–84. · Zbl 0551.10025 · doi:10.1017/S0027763000020973
[27] Kitaoka Y. , Arithmetic of quadratic forms, Cambridge Tracts in Mathematics 106 (Cambridge University Press, Cambridge, 1993). · Zbl 0785.11021 · doi:10.1017/CBO9780511666155
[28] DOI: 10.1007/BF01420529 · Zbl 0416.10023 · doi:10.1007/BF01420529
[29] DOI: 10.1007/BF01393889 · Zbl 0665.10019 · doi:10.1007/BF01393889
[30] DOI: 10.1007/BF01389166 · Zbl 0468.10015 · doi:10.1007/BF01389166
[31] Krieg A. , ’A Dirichlet series for modular forms of degree \(n\) ’, Acta Arith. 59 (1991) 243–259. · Zbl 0707.11037
[32] Murase A. Sugano T. , ’Inner product formula for Kudla lift’, Automorphic forms and zeta functions (World Scientific Publishing, Hackensack, NJ, 2006) 280–313. · Zbl 1103.11016 · doi:10.1142/9789812774415_0013
[33] DOI: 10.1007/BF01679701 · Zbl 0465.10021 · doi:10.1007/BF01679701
[34] Rallis S. , \(L\) -functions and oscillator representation, Lecture Notes in Mathematics 1245 (Springer, Berlin, 1987).
[35] Schulze-Pillot R. , ’Local theta correspondence and the theta lifting of Duke–Imamoglu and Ikeda’, Osaka J. Math. 45 (2008) 965–971. · Zbl 1193.11043
[36] DOI: 10.1002/cpa.3160290618 · Zbl 0348.10015 · doi:10.1002/cpa.3160290618
[37] Shimura G. , Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs 82 (American Mathematical Society, Providence, RI, 2000). · Zbl 0967.11001
[38] Yamazaki T. , ’Rankin–Selberg method for Siegel cusp forms’, Nagoya Math. J. 120 (1990) 35–49. · Zbl 0715.11025 · doi:10.1017/S0027763000003226
[39] Zagier D. , ’Modular forms whose Fourier coefficients involve zeta functions of quadratic fields’, Modular functions of one variable, VI (Proc. Second Internat. Conf. Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics 627 (Springer, Berlin, 1977) 105–169.
[40] DOI: 10.1070/SM1985v051n01ABEH002853 · Zbl 0571.10029 · doi:10.1070/SM1985v051n01ABEH002853
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.