×

Autofrettage and shakedown analyses of an internally pressurized thick-walled spherical shell based on two strain gradient plasticity solutions. (English) Zbl 1401.74204

Summary: An autofrettage analysis of an internally pressurized thick-walled spherical shell is performed by using two closed-form solutions for an elastic linear-hardening shell and an elastic power-law hardening shell based on a strain gradient plasticity theory, which contains a microstructure-dependent length-scale parameter and can capture size effects observed at the micron scale. The analysis leads to the analytical determination of the elastic and plastic limiting pressures, the residual stress field, and the stress field induced by an operating pressure for each strain-hardening spherical shell. This is followed by a shakedown analysis of the autofrettaged thick-walled spherical shells, which results in analytical formulas for reverse yielding and elastic reloading shakedown limits. The newly obtained formulas include their classical plasticity-based counterparts as special cases. To quantitatively illustrate the new formulas derived, a parametric study is conducted. The numerical results reveal that the shakedown limit (as the upper bound of the autofrettage pressure) increases with the increase of the strain-hardening level. In addition, it is observed that the shakedown limit based on the strain gradient plasticity solution increases with the decrease of the inner radius when the shell inner radius is sufficiently small, but it approaches that (a constant value independent of the inner radius) based on the classical plasticity solution when the inner radius becomes large. This predicted size (strengthening) effect at the micron scale by the newly obtained formulas agrees with the general trends observed experimentally.

MSC:

74K25 Shells
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adibi-Asl, R., Livieri, P.: Analytical approach in autofrettaged spherical pressure vessels considering the Bauschinger effect. ASME J. Press. Vessels Technol. 129, 411-419 (2007) · doi:10.1115/1.2748839
[2] Aifantis, E.C.: Gradient material mechanics: perspectives and prospects. Acta Mech. 225, 999-1012 (2014) · Zbl 06287689 · doi:10.1007/s00707-013-1076-y
[3] Carroll, M.M.: Radial expansion of hollow spheres of elastic-plastic hardening material. Int. J. Solids Struct. 21, 645-670 (1985) · Zbl 0576.73026 · doi:10.1016/0020-7683(85)90070-8
[4] Chadwick, P.: Compression of a spherical shell of work-hardening material. Int. J. Mech. Sci. 5, 165-182 (1963) · doi:10.1016/0020-7403(63)90020-1
[5] Chen, H.F.: Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. ASME J. Press. Vessels Technol. 132, 011202-1-011202-8 (2009)
[6] Chen, H.F., Ponter, A.R.S.: Shakedown and limit analyses for 3-D structures using the linear matching method. Int. J. Press. Vessels Pip. 78, 443-451 (2001) · doi:10.1016/S0308-0161(01)00052-7
[7] Chen, P.C.T.: The Bauschinger and hardening effect on residual stresses in an autofrettaged thick-walled cylinder. ASME J. Press. Vessels Technol. 108, 108-112 (1986) · doi:10.1115/1.3264743
[8] Dassault Systèmes, ABAQUS, Version 6.10, Providence, RI, USA (2010)
[9] Davidson, T.E., Kendall, D.P., Reiner, A.N.: Residual stresses in thick-walled cylinders resulting from mechanically induced overstrain. Exp. Mech. 3, 253-262 (1963) · doi:10.1007/BF02325841
[10] Durban, D., Baruch, M.: Analysis of an elastic-plastic thick walled sphere loaded by internal and external pressure. Int. J. Non-Linear Mech. 12, 9-22 (1977) · Zbl 0346.73049 · doi:10.1016/0020-7462(77)90012-9
[11] Fan, S.C., Yu, M.-H., Yang, S.Y.: On the unification of yield criteria. ASME J. Appl. Mech. 68, 341-343 (2001) · Zbl 1110.74433 · doi:10.1115/1.1320451
[12] Gamer, U.: The expansion of the elastic-plastic spherical shell with nonlinear hardening. Int. J. Mech. Sci. 30, 415-426 (1988) · Zbl 0653.73030 · doi:10.1016/0020-7403(88)90015-X
[13] Gao, X.-L.: An exact elasto-plastic solution for an open-ended thick-walled cylinder of a strain-hardening material. Int. J. Press. Vessels Pip. 52, 129-144 (1992) · doi:10.1016/0308-0161(92)90064-M
[14] Gao, X.-L.: An exact elasto-plastic solution for a thick-walled spherical shell of elastic linear-hardening material with finite deformations. Int. J. Press. Vessels Pip. 57, 45-56 (1994) · doi:10.1016/0308-0161(94)90096-5
[15] Gao, X.-L.: Analytical solution of a borehole problem using strain gradient plasticity. ASME J. Eng. Mater. Technol. 124, 365-370 (2002) · doi:10.1115/1.1480408
[16] Gao, X.-L.: Elasto-plastic analysis of an internally pressurized thick-walled cylinder using a strain gradient plasticity theory. Int. J. Solids Struct. 40, 6445-6455 (2003) · Zbl 1079.74008
[17] Gao, X.-L.: Strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic-plastic material. Mech. Res. Commun. 30, 411-420 (2003) · Zbl 1065.74566
[18] Gao, X.-L.: An expanding cavity model incorporating strain-hardening and indentation size effects. Int. J. Solids Struct. 43, 6615-6629 (2006) · Zbl 1120.74655
[19] Gao, X.-L.: Strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic linear-hardening material. Mech. Adv. Mater. Struct. 13, 43-49 (2006)
[20] Gao, X.-L.: Strain gradient plasticity solution for an internally pressurized thick-walled cylinder of an elastic linear-hardening material. Z. Angew. Math. Phys. 58, 161-173 (2007) · Zbl 1111.74005 · doi:10.1007/s00033-006-0083-4
[21] Gao, X.-L., Wei, X.-X.: An exact elasto-plastic solution for a thick-walled spherical shell of a strain-hardening material, In: Pressure Vessels and Components 1991, PVP-Vol. 217, ASME United Engineering Center, New York, pp. 75-79 (1991) · Zbl 0990.74016
[22] Gao, X.-L., Wen, J.-F., Xuan, F.-Z., Tu, S.-T.: Autofrettage and shakedown analyses of an internally pressurized thick-walled cylinder based on strain gradient plasticity solutions. ASME J. Appl. Mech. 82, 041010-1-041010-12 (2015) · Zbl 1401.74204
[23] Gupta, A., Steigmann, D.J., Stölken, J.S.: Aspects of the phenomenological theory of elastic-plastic deformation. J. Elast. 104, 249-266 (2011) · Zbl 1320.74027 · doi:10.1007/s10659-010-9288-z
[24] Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405-421 (2009) · Zbl 1170.74311 · doi:10.1016/j.jmps.2008.12.002
[25] Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950) · Zbl 0041.10802
[26] Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity-II. Analysis. J. Mech. Phys. Solids 48, 99-128 (2000) · Zbl 0990.74016 · doi:10.1016/S0022-5096(99)00022-8
[27] Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225-238 (2000) · Zbl 1075.74022 · doi:10.1016/S0020-7683(99)00090-6
[28] Kargarnovin, M.H., Darijani, H., Naghdabadi, R.: Evaluation of the optimum pre-stressing pressure and wall thickness determination of thick-walled spherical vessels under internal pressure. J. Frankl. Inst. 344, 439-451 (2007) · Zbl 1269.49080 · doi:10.1016/j.jfranklin.2006.02.013
[29] Little, R.W.: Elasticity. Prentice-Hall, Englewood Cliffs, NJ (1973) · Zbl 0357.73024
[30] Maier, G.: On some issues in shakedown analysis. ASME J. Appl. Mech. 68, 799-808 (2001) · Zbl 1110.74577 · doi:10.1115/1.1379368
[31] Maleki, M., Farrahi, G.H., Haghpanah Jahromi, B., Hosseinian, E.: Residual stress analysis of autofrettaged thick-walled spherical pressure vessel. Int. J. Press. Vessels Pip. 87, 396-401 (2010) · doi:10.1016/j.ijpvp.2010.04.002
[32] Maugin, GA; Altenbach, H. (ed.); Maugin, GA (ed.); Erofeev, V. (ed.), A historical perspective of generalized continuum mechanics, 3-19 (2011), Berlin · Zbl 1276.74004 · doi:10.1007/978-3-642-19219-7_1
[33] Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845-857 (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
[34] Parker, A.P., Huang, X.: Autofrettage and reautofrettage of a spherical pressure vessel. ASME J. Press. Vessels Technol. 129, 83-88 (2007) · doi:10.1115/1.2389020
[35] Perl, M., Perry, J.: The beneficial contribution of realistic autofrettage to the load-carrying capacity of thick-walled spherical pressure vessels. ASME J. Press. Vessels Technol. 132, 011204-1-011204-6 (2010)
[36] Polizzotto, C.: On the conditions to prevent plastic shakedown of structures: part II—the plastic shakedown limit load. ASME J. Appl. Mech. 60, 20-25 (1993) · Zbl 0777.73019 · doi:10.1115/1.2900750
[37] Tsagrakis, I., Konstantinidis, A., Aifantis, E.C.: Strain gradient and wavelet interpretation of size effects in yield and strength. Mech. Mater. 35, 733-745 (2003) · doi:10.1016/S0167-6636(02)00205-3
[38] Tuba, I.S.: Elastic-plastic analysis for hollow spherical media under uniform radial loading. J. Frankl. Inst. 280, 343-355 (1965) · doi:10.1016/0016-0032(65)90314-5
[39] Voyiadjis, G.Z., Abu Al-Rub, R.K.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998-4029 (2005) · Zbl 1120.74366 · doi:10.1016/j.ijsolstr.2004.12.010
[40] Yu, M.-H.: Advances in strength theories for materials under complex stress state in the 20th century. ASME Appl. Mech. Rev. 55, 169-218 (2002) · Zbl 1111.74005
[41] Zheng, X.-T., Xuan, F.-Z.: Autofrettage and shakedown analysis of strain-hardening cylinders under thermo-mechanical loadings. J. Strain Anal. 46, 45-55 (2011) · doi:10.1243/03093247JSA682
[42] Zhu, H.T., Zbib, H.M., Aifantis, E.C.: Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech. 121, 165-176 (1997) · Zbl 0885.73044 · doi:10.1007/BF01262530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.