×

New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models. (English) Zbl 1176.76068

Summary: We propose a class of new discretization schemes for solving the rate-type non-Newtonian constitutive equations. The so-called conformation tensor has been known to be symmetric and positive definite in a large class of constitutive equations. Preserving such a positivity property on the discrete level is believed to be crucially important but difficult. High Weissenberg number problems on numerical instabilities have been often associated with this issue. In this paper, we present various discretization schemes that preserve the positive-definiteness of the conformation tensor regardless of the time and spatial resolutions. Moreover, the robustness of the algorithm has been also demonstrated by the stability analysis using the discrete analogue of energy estimates. New schemes presented in this paper are constructed based upon the newly discovered relationship between the rate-type constitutive equations and the symmetric matrix Riccati differential equations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G., Matrix Riccati equations: in control and systems theory, Systems and Control (2003), Birkhaser-Verlag: Birkhaser-Verlag Boston · Zbl 1027.93001
[2] Baaijens, F. P.T., An u-ale formulation of 3-d unsteady viscoelastic flow, Int. J. Numer. Meth. Eng., 36, 1115-1143 (1993) · Zbl 0771.76053
[3] Beris, A. N.; Edwards, B. J., Thermodynamics of flowing systems: with internal microstructure, Oxford Engineering Science Series, 36 (1994), Oxford Science Publications: Oxford Science Publications New York
[4] Boger, R. V.; Walters, K., Rheological Phenomena in Focus (1993), Elsevier: Elsevier Amsterdam · Zbl 0843.76001
[5] Brenner, S.; Scott, L. R., The mathematical theory of finite element methods, Number 15 in Texts in Applied Mathematics (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1012.65115
[6] Brezzi, F.; Fortin, M., Mixed and hybrid finite elements methods, Springer Series in Computational Mathematics, 15 (1991), Springer-Verlag: Springer-Verlag New York
[7] Chemin, J.; Masmoudi, N., About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM. J. Math. Anal., 33, 84-112 (2001) · Zbl 1007.76003
[8] Clermont, J. R.; Pierrard, J. M., Experimental study of a non-viscometric flow: kinematics of a viscoelastic fluid at the exit of a cylindrical tube, J. Non-Newtonian Fluid Mech., 1, 175-182 (1976)
[9] Dealy, J. M.; Vu, T. K.P., The weissenberg effect in molten polymers, J. Non-Newtonian Fluid Mech., 3, 127-140 (1977)
[10] Dieci, L.; Eirola, T., Positive definiteness in the numerical solution of Riccati differential equations, Numer. Math., 67, 303-313 (1994) · Zbl 0791.65050
[11] Dupret, F.; Marchal, J. M.; Crochet, M. J., On the consequence of discretization errors in the numerical calculation of viscoelastic flow, J. Non-Newtonian Fluid Mech., 18, 173-186 (1985) · Zbl 0565.76010
[12] Feng, K.; Shang, Z., Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71, 451-463 (1995) · Zbl 0839.65075
[13] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0396.65070
[14] Gordon, R. J.; Schowalter, W. R., Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheo., 16, 79-97 (1972) · Zbl 0368.76006
[15] Hille, E.; Phillips, R. S., Functional analysis and semi-groups, Americal Mathematical Society Col. Publ., 31 (1948), Amer. Math. Soc.: Amer. Math. Soc. New York
[16] Hughes, T., Numerical Implementation of Constitutive Models: Rate-independent Deviatoric Plasticity: Theoretical Foundation for Large-scale Computations for Nonlinear Material Behavior (1984), Martinus Nijhoff Publisher: Martinus Nijhoff Publisher Dordrecht, The Netherlands
[17] Hughes, T.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. Numer. Meth. Eng., 15, 12, 1862-1867 (1980) · Zbl 0463.73081
[18] Hulsen, M. A., Some properties and analytical expressions for plane flow of Leonov and Giesekus models, J. Non-Newtonian Fluid Mech., 30, 85-92 (1988)
[19] Hulsen, M. A., A sufficient condition for a positive definite configuration tensor in differential models, J. Non-Newtonian Fluid Mech., 38, 93-100 (1990)
[20] Douglas, J.; Russell, T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 5, 871-885 (1982) · Zbl 0492.65051
[21] Jayaraman, A.; Belmonte, A., Oscillations of a solid sphere falling through a wormlike micellar fluid, Phys. Rev. E, 67, 65301-65304 (2003)
[22] Joseph, D. D., Fluid dynamics of viscoelastic liquids, Applied Mathematical Sciences, 84 (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0698.76002
[23] Joseph, D. D.; Renardy, M.; Saut, J. C., Hyperbolicity and change of type in the flow of viscoelastic fluid, Arch. Rat. Mech. Anal., 87, 3, 213-251 (1985) · Zbl 0572.76011
[24] Joseph, D. D.; Saut, J. C., Change of type and loss of evolution in the flow of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 20, 117-141 (1986) · Zbl 0626.76009
[25] Johnson, M. W.; Segalman, D., A model for visco-elastic fluid behaviour which allows non-affine deformation, J. Non-Newtonian Fluid Mech., 2, 255-270 (1977) · Zbl 0369.76008
[26] Lancaster, P.; Rodman, L., Existence and uniqueness theorems for the algebraic Riccati equation, Int. J. Control., 32, 285-309 (1980) · Zbl 0439.49011
[27] F. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic materials. Preprint, 2004.; F. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic materials. Preprint, 2004.
[28] Lions, P. L.; Masmoudi, N., Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., 21B, 131-146 (2000) · Zbl 0957.35109
[29] Liu, C.; Walkington, N. J., An eulerian description of fluids containing viscohyperelastic particles, Arch. Rat. Mech. Anal., 159, 229-252 (2001) · Zbl 1009.76093
[30] Lozinski, A.; Owens, R. G., An energy estimate for the Oldroyd-B model: theory and applications, J. Non-Newtonian Fluid Mech., 112, 161-176 (2003) · Zbl 1065.76018
[31] Nochetto, R. H.; Wahlbin, L. B., Positivity preserving finite element approximation, Math. Comput., 71, 240, 1405-1419 (2002) · Zbl 1001.41011
[32] Oldroyd, J. G., On the formulation of rheological equations of state, Proc. Roy. Soc., A200, 523-541 (1950) · Zbl 1157.76305
[33] Owens, R. G.; Phillips, T. N., Computational Rheology (2002), Imperial College Press: Imperial College Press London · Zbl 1015.76002
[34] Phillips, T. N.; Williams, A. J., Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method, J. Non-Newtonian Fluid Mech., 87, 215-246 (1999) · Zbl 0945.76052
[35] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38 (1982) · Zbl 0505.76100
[36] Reid, W. T., Riccati differential equations, Mathematics in Science and Engineering, 86 (1972), Academic Press: Academic Press New York · Zbl 0209.11601
[37] Renardy, M., Mathematical analysis of viscoelastic flows, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 73 (2000), SIAM: SIAM Philadelphia · Zbl 0956.76001
[38] Russell, T. F.; Celia, M. A., An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM), Adv. Water Res., 25, 1215-1231 (2002)
[39] L.R. Scott, M. Vogelius. Conforming finite element methods for incompressible and nearly incompressible continua, volume Lectures in Appl. Math., 22-2 of Large-scale computations in fluid mechanics, Part 2(La Jolla, Calif., 1983). Am. Math. Soc., Providence, RI, 1985.; L.R. Scott, M. Vogelius. Conforming finite element methods for incompressible and nearly incompressible continua, volume Lectures in Appl. Math., 22-2 of Large-scale computations in fluid mechanics, Part 2(La Jolla, Calif., 1983). Am. Math. Soc., Providence, RI, 1985.
[40] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, Interdisciplinary Applied Mathematics, 7 (1998), Springer: Springer New York · Zbl 0934.74003
[41] Thien, N. P.; Tanner, R. I., A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech., 2, 353-365 (1977) · Zbl 0361.76011
[42] Wedgewood, L. E.; Ostrov, D. N.; Bird, R. B., A finitely extensible bead-spring chain model for dilute polymer solutions, J. Non-Newtonian Fluid Mech., 40, 119-139 (1991) · Zbl 0726.76015
[43] Xiu, D.; Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J. Comp. Phys., 172, 658-684 (2001) · Zbl 1028.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.