×

Semantique algébrique d’un langage de programmation type Algol. (French) Zbl 0369.68008


MSC:

68N01 General topics in the theory of software
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] 1. J. J. ARSAC, Nouvelles leçons de programmation, Publication de l’I.P., n^\circ 75-29, Université Paris VI, Paris, 1975.
[2] 2. R. BURSTALL and J. DARLINGTON, A Transformation System for Developing Recursive Programs, Journal of Ass. Comp. Mach., Vol. 24, 1977, pp. 44-67. Zbl0343.68014 MR451816 · Zbl 0343.68014
[3] 3. G. BERRY et B. COURCELLE, Program Equivalence and Canonical Forms in Stable Discrete Interpretations, 3^\circ Colloque International, Automata, Languages and Programming, S. Michaelson, R. Milner Eds., pp. 168-188, Edinburgh University Progra Press, 1976. Zbl0363.68036 · Zbl 0363.68036
[4] 4. G. COUSINEAU, Les arbres à feuilles indicées : un cadre algébrique pour l’étude des structures de contrôle, Thèse d’État, Université Paris-VII, Paris, 1977.
[5] 5. I. GUESSARIAN, Semantic Equivalence of Program Schemes and its Syntactic Characterization, 3^\circ Colloque International, Automata, Languages and Programming, S. Michaelson, R. Milner Eds., Edinburgh University Press, 1976, pp. 189- 200. Zbl0364.68019 · Zbl 0364.68019
[6] 6. L. GUESSARIAN, Les tests et leur caractérisation syntaxique, R.A.I.R.O. série Informatique Théorique n^\circ 2 1977, pp. 133-156. Zbl0364.68018 MR448988 · Zbl 0364.68018
[7] 7. I. IANOV, The Logical Schemes of Algorithms, in Problems of Cybernetics, London, Pergamon Press, 1960, pp. 82-140. Zbl0142.24801 · Zbl 0142.24801
[8] 8. L. KOTT, Systèmes schématiques généralisés, Theoretical Computer Science, 3rd GI Conference, Darmstadt, Lecture Notes in Computer Science 48, H. Tzschach, H. Waldschmidt, H. K.-G. Walter Eds., Springer-Verlag, 1977, pp. 184-189. Zbl0375.68015 MR502297 · Zbl 0375.68015
[9] 9. L. KOTT, Approche par le magma d’un langage de programmation type Algol : sémantique et vérification de programm, Thèse 3^\circ cycle, Université Paris-VII, Paris, 1976.
[10] 10. L. KOTT, Sémantique algébrique et principe d’induction : l’induction de Kleene, soumis à publication, 1977.
[11] 11. J. MCCARTHY, A Basis for a Mathematical Theory of Computation, in Computer Programming and Formal Systems, P. Braffort, D. Hirschberg Eds., North-Holland, Amsterdam, 1963, pp. 33-70. Zbl0203.16402 MR148258 · Zbl 0203.16402
[12] 12. Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974. Zbl0353.68066 MR400771 · Zbl 0353.68066
[13] 13. Z. MANNA and J. VUILLEMIN, Fixpoint Approach to the Theory of Computation, Comm. of Ass. Comp. Mach. 15, 1972, pp. 528-536. Zbl0245.68011 MR440993 · Zbl 0245.68011
[14] 14. M. NIVAT, Sur l’interprétation des schémas de programme monadique, Rapport IRIA-Laboria n^\circ 1, 1972.
[15] 15. M. NlVAT, On the Interpretation of Recursive Polyadic Schemes, Instituto Nazionale di Alta Matematica, Symposia Mathematica, Volume XV, 1974, pp. 251-281.
[16] 16. D. PARK, Fixpoint Induction and Proof of Program Properties, Machine Intelligence 5, B. Meltzer, D. Michie Eds., 1969, pp. 59-78. Zbl0219.68007 MR323149 · Zbl 0219.68007
[17] 17. D. SCOTT and C. STRACHEY, Towards a Mathematical Semantics for Computer Languages, Technical Memo PRC-G, Oxford University, Oxford, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.