×

Entropy generation effects in a hydromagnetic free convection flow past a vertical oscillating plate. (English. Russian original) Zbl 1348.76183

J. Appl. Mech. Tech. Phys. 57, No. 1, 27-37 (2016); translation from Prikl. Mekh. Tekh. Fiz. 57, No. 1, 33-44 (2016).
Summary: An unsteady free convective flow of a viscous fluid past an oscillating plate is considered, and the effects of entropy generation are investigated. The governing partial differential equations are normalized by using suitable transformations, and an exact solution of the problem is obtained by using the Laplace transformation technique. The expressions for the velocity and temperature are then used to compute the skin friction, Nusselt number, local entropy generation number, and Bejan number.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76R10 Free convection
80A10 Classical and relativistic thermodynamics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Schlichting and K. Gersten, Boundary Layer Theory (Springer, Berlin, 2000). · Zbl 0940.76003 · doi:10.1007/978-3-642-85829-1
[2] M. J. Lighthill, “The Response of Skin Friction and Heat Transfer to Fluctuations in the Stream Velocity,” Proc. Roy. Soc. London, Ser. A, 224, 1-23 (1954). · Zbl 0058.40703 · doi:10.1098/rspa.1954.0137
[3] J. T. Stuart, “A Solution of the Navier-Stokes and Energy Equations Illustrating the Response of Skin Friction and Temperature of an Infinite Plate Thermometer to Fluctuations in the Stream Velocity,” Proc. Roy. Soc. London, Ser. A 231, 116-130 (1955). · Zbl 0066.42703 · doi:10.1098/rspa.1955.0160
[4] R. S. Ong and J. A. Nicholls, “Flow of a Magnetic Field near an Infinite Oscillating Flat Wall,” J. Aerospace Sci. 26 313-314 (1959). · Zbl 0088.42804 · doi:10.2514/8.8057
[5] R. S. Nanda and V. P. Sharma, “Free Convection Boundary Layers in Oscillatory Flow,” J. Fluid Mech. 15 419-428 ( 1963). · Zbl 0108.39204
[6] R. Penton, “The Transient for Stokes Oscillating Plane: A Solution in Terms of Tabulated Functions,” J. Fluid Mech. 31, 819-825 (1968). · Zbl 0193.56302 · doi:10.1017/S0022112068000509
[7] V. M. Soundalgekar, “Free Convection Effects on the Flow Past an Infinite Vertical Oscillating Plate,” Astrophys. Space Sci. 89, 241-254 (1983). · Zbl 0543.76117 · doi:10.1007/BF00655978
[8] V. M. Soundalgekar and S. P. Akolkar, “Effect of Free Convection Currents and Mass Transfer on Flow Past a Vertical Oscillating Plate,” Astrophys. Space Sci. 64, 165-171 (1979). · Zbl 0543.76117 · doi:10.1007/BF00640038
[9] R. C. Choudhary, “Hydromagnetic Flow near an Oscillating Porous Flat Plate,” Proc. Indian Acad. Sci. 86A (6), 531-535 (1977). · Zbl 0377.76094
[10] P. Puri and P. K. Kythe, “Thermal Effect in Stokes Second Problem,” Acta Mech. 112, 44-50 (1998).
[11] M. E. Erdogan, “A Note on an Unsteady Flow of a Viscous Fluid Due to an Oscillating Plane Wall,” J. Non-Linear Mech. 35, 1-6 (2000). · Zbl 1006.76028 · doi:10.1016/S0020-7462(99)00019-0
[12] K. Vajravelu and J. Rivera, “Hydromagnetic Flow at an Oscillating Plate,” Int. J. Non-Linear Mech. 38, 305-312 (2003). · Zbl 1346.76213 · doi:10.1016/S0020-7462(01)00063-4
[13] C. M. Liu, H. H. Hwung, and C. H. Kong, “The Unsteady Viscous Flow Generated by an Oscillating Porous Plate,” J. Mech. 24 (2), 145-152 (2008). · doi:10.1017/S1727719100002173
[14] I. Khan, K. Fakhar, and S. Shafie, “Magnetohydrodynamic Free Convection Flow Past an Oscillating Plate Embedded in a Porous Medium,” J. Phys. Soc. Jpn. 80, 104401-104410 (2011). · doi:10.1143/JPSJ.80.104401
[15] I. Khan, A. Hussanan, M. Imran, et al., “Natural Convection Flow Past an Oscillating Plate with Newtonian Heating,” Heat Trans. Res. 42 (2), 119-135 (2014); DOI: 10.1615/HeatTransRes.2013006385.
[16] A. Bejan, “A Study of Entropy Generation in Fundamental Convective Heat Transfer,” J. Heat Transfer 101, 718-725 (1979). · doi:10.1115/1.3451063
[17] M. Q. A. Odat, R. A. Damseh, and M. A. A. Nimr, “Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate,” Entropy 4, 293-303 (2004). · Zbl 1130.76420 · doi:10.3390/e6030293
[18] O. D. Makinde and E. Osalusi, “Entropy Generation in a Liquid Film Falling along an Inclined Porous Heated Plate,” Mech. Res. Comm. 33(5), 692-698 (2006). · Zbl 1192.76009 · doi:10.1016/j.mechrescom.2005.06.010
[19] O. D. Makinde, Irreversibility Analysis for a Gravity Driven Non-Newtonian Liquid Film along an Inclined Isothermal Plate, Phys. Scripta. 74, 642-645 (2006). · Zbl 1339.76012 · doi:10.1088/0031-8949/74/6/007
[20] A. Reveillere and A. C. Baytas, “Minimum Entropy Generation for Laminar Boundary Layer Flow over a Permeable Plate,” Int. J. Exergy. 7 (2), 164-177 (2010). · doi:10.1504/IJEX.2010.031238
[21] O. D. Makinde, “Thermodynamic Second Law Analysis for a Gravity Driven Variable Viscosity Liquid Film along an Inclined Heated Plate with Convective Cooling,” J. Mech. Sci. Tech. 24 (4), 899-908 (2010). · doi:10.1007/s12206-010-0215-9
[22] O. D. Makinde “Entropy Analysis for MHD Boundary Layer Flow and Heat Transfer over a Flat Plate with a Convective Surface Boundary Condition,” Int. J. Exergy 10 (2) 142-154 2012. · doi:10.1504/IJEX.2012.045862
[23] O. D. Makinde, “Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow with Thermal Radiation and Newtonian Heating,” Entropy 13, 1446-1464 (2011). · Zbl 1446.76181 · doi:10.3390/e13081446
[24] A. S. Butt, S. Munawar, A. Ali, and A. Mehmood, “Entropy Generation in the Blasius Flow under Thermal Radiation,” Phys. Scripta 85, 035008 (2012); DOI: 10.1088/0031-8949/85/03/035008. · Zbl 1377.76012 · doi:10.1088/0031-8949/85/03/035008
[25] A. S. Butt, S. Munawar, A. Ali, and A. Mehmood, “Entropy Generation in Hydrodynamic Slip Flow over a Vertical Plate with Convective Boundary,” J. Mech. Sci. Tech. 26 (9), 2977-2984 (2012). · doi:10.1007/s12206-012-0701-3
[26] A. S. Butt and A. Ali, “Entropy Effects in Hydromagnetic Free Convection Flow Past a Vertical Plate Embedded in a Porous Medium in the Presence of Thermal Radiation,” Eur. Phys. J. Plus. 128 (5), 1-15 (2013); DOI: 10.1140/epjp/i2013-13051-y. · doi:10.1140/epjp/i2013-13051-y
[27] B. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970). · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.