×

zbMATH — the first resource for mathematics

The recognition problem: What is a topological manifold? (English) Zbl 0418.57005

MSC:
57N15 Topology of the Euclidean \(n\)-space, \(n\)-manifolds (\(4 \leq n \leq \infty\)) (MSC2010)
57P99 Generalized manifolds
57N45 Flatness and tameness of topological manifolds
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. D. Ancel, The locally flat approximation of cell-like embedding relations, Doctoral thesis, University of Wisconsin at Madison, 1976. · Zbl 0405.57007
[2] F. D. Ancel and J. W. Cannon, The locally flat approximation of cell-like embedding relations, Ann. of Math. (2) 109 (1979), no. 1, 61 – 86. · Zbl 0405.57007
[3] J. W. Alexander, Bull. Amer. Math. Soc. 28 (1922), 10.
[4] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat Acad. Sci. U.S.A. 10 (1924), 6-8. · JFM 50.0659.01
[5] J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
[6] J. W. Alexander, Remarks on a point set constructed by Antoine, Proc. Nat Acad. Sci. U.S.A. 10 (1924), 10-12. · JFM 50.0661.03
[7] M. L. Antoine, Sur la possibilité d’étendre l’homéomorphie de deux figures à leurs voisinages, C. R. Acad. Sci. Paris 171 (1920), 661-663. · JFM 47.0524.01
[8] M. L. Antoine, Sur l’homéomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221-325. · JFM 48.0650.01
[9] Steve Armentrout, Monotone decompositions of \?³, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 1 – 25.
[10] R. H. Bing, The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644 – 653. · Zbl 0060.40501
[11] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354 – 362. · Zbl 0049.40401
[12] R. H. Bing, A characterization of 3-space by partitionings, Trans. Amer. Math. Soc. 70 (1951), 15 – 27. · Zbl 0042.41903
[13] R. H. Bing, Point-like decompositions of \?³, Fund. Math. 50 (1961/1962), 431 – 453.
[14] R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294 – 305. · Zbl 0109.15406
[15] R. H. Bing, Tame Cantor sets in \?³, Pacific J. Math. 11 (1961), 435 – 446. · Zbl 0111.18606
[16] William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276 – 297. · Zbl 0042.17601
[17] M. G. Brin, Three-manifold compactifications of open three-manifolds, Doctoral Thesis, University of Wisconsin at Madison, 1977.
[18] J. L. Bryant and R. C. Lacher, Resolving 0-dimensional singularities in generalized manifolds. Notices Amer. Math. Soc. 24 (1977), A396. Abstract #77T-G68. · Zbl 0373.57002
[19] C. E. Burgess and J. W. Cannon, Embeddings of surfaces in \?³, Rocky Mountain J. Math. 1 (1971), no. 2, 259 – 344. · Zbl 0227.55004
[20] J. W. Cannon, \?\?\? properties in neighbourhoods of embedded surfaces and curves in \?³, Canad. J. Math. 25 (1973), 31 – 73. · Zbl 0242.55003
[21] J. W. Cannon, Taming cell-like embedding relations, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 66 – 118. Lecture Notes in Math., Vol. 438.
[22] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83 – 112. · Zbl 0424.57007
[23] J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 261 – 300. · Zbl 0476.57006
[24] J. W. Cannon and R. J. Daverman, Cell-like decompositions arising from mismatched sewings: applications to 4-manifolds, Fund. Math. 111 (1981), no. 3, 211 – 233. · Zbl 0469.57011
[25] J. W. Cannon and R. J. Daverman, A totally wild flow, Indiana Univ. Math. J. 30 (1981), no. 3, 371 – 387. · Zbl 0432.58018
[26] Lawrence O. Cannon, Sums of solid horned spheres, Trans. Amer. Math. Soc. 122 (1966), 203 – 228. · Zbl 0138.18903
[27] A. V. Černavskiĭ, The identity of local flatness and local simple connectedness for imbeddings of (\?-1)-dimensional into \?-dimensional manifolds when \?>4, Mat. Sb. (N.S.) 91(133) (1973), 279 – 286, 288 (Russian).
[28] E. H. Connell, A topological \?-cobordism theorem for \?\ge 5, Illinois J. Math. 11 (1967), 300 – 309. · Zbl 0146.45201
[29] Robert J. Daverman, A new proof for the Hosay-Lininger theorem about crumpled cubes, Proc. Amer. Math. Soc. 23 (1969), 52 – 54. · Zbl 0181.51702
[30] Robert J. Daverman, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410 – 413. · Zbl 0256.57005
[31] R. J. Daverman, Servings of closed n-cell complements, Trans. Amer. Math. Soc. (to appear).
[32] Robert J. Daverman, Every crumpled \?-cube is a closed \?-cell-complement, Michigan Math. J. 24 (1977), no. 2, 225 – 241. · Zbl 0376.57007
[33] A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972 (German). Die Grundlehren der mathematischen Wissenschaften, Band 200. · Zbl 0234.55001
[34] R. D. Edwards, The double suspension of a certain homology 3-sphere is S, Notices Amer. Math. Soc. 22 (1975), A 334. Abstract #75T-G33.
[35] R. D. Edwards, Ann. of Math, (to appear).
[36] R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, Notices Amer. Math. Soc. 24 (1977), A 649. Abstract #751-G5.
[37] M. C. Escher, The graphic work of M. C. Escher, Ballantine Books, New York, 1971.
[38] D. Everett, Shrinking countable decompositions of E, in Proceedings of the Georgia Topology Conference, 1977 (to appear).
[39] S. Ferry, [sic]
[40] David E. Galewski and Ronald J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1 – 34. · Zbl 0441.57017
[41] O. G. Harrold Jr., Locally peripherally euclidean spaces are locally euclidean, Ann. of Math. (2) 74 (1961), 207 – 220. · Zbl 0101.15301
[42] O. G. Harrold Jr., A characterization of locally euclidean spaces, Trans. Amer. Math. Soc. 118 (1965), 1 – 16. · Zbl 0137.16505
[43] N. Hosay, The sum of a real cube and a crumpled cube is S, Notices Amer. Math. Soc. 10 (1963), 666. Abstract #607-17.
[44] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. · Zbl 0361.57004
[45] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495 – 552. · Zbl 0364.54009
[46] W. B. R. Lickorish and L. C. Siebenmann, Regular neighbourhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969), 207 – 230. · Zbl 0195.53801
[47] Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534 – 549. · Zbl 0134.43002
[48] Lloyd L. Lininger, Actions on \?\(^{n}\), Topology 9 (1970), 301 – 308. · Zbl 0209.54703
[49] T. Matumoto, Variétés simpliciales d’homologie et variétés topologiques métrisables, Thesis, Université de Paris-Sud, 91405 Orsay, 1976.
[50] Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96 – 114. · Zbl 0048.17102
[51] Robert L. Moore, Concerning a set of postulates for plane analysis situs, Trans. Amer. Math. Soc. 20 (1919), no. 2, 169 – 178. · JFM 47.0519.06
[52] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), no. 4, 416 – 428. · JFM 51.0464.03
[53] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. · Zbl 0192.28901
[54] H. Poincaré, Oeuvres, Vol. 6, Gauthier-Villars, París, 1953, pp. 181-498.
[55] G. Pólya, How to solve it, Doubleday, Garden City, N. Y., 1957.
[56] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. · Zbl 0339.55004
[57] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. · Zbl 0254.57010
[58] T. Benny Rushing, Topological embeddings, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 52. · Zbl 0295.57003
[59] C. L. Seebeck III, Codimension one manifolds that are locally homotopically unknotted on one side. I and II (preprint). · Zbl 0309.57006
[60] H. Seifert and W. Threlfall, Lehrbuch der Topologie, reprinted by Chelsea, New York. · JFM 60.0496.05
[61] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271 – 294. · Zbl 0216.20101
[62] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202
[63] M. Starbird, Cell-like, 0-dimensional decompositions of E (to appear). · Zbl 0407.57005
[64] Michael Starbird, Flexible regular neighborhoods for complexes in \?³, Proceedings of the 1977 Topology Conference (Louisiana State Univ., Baton Rouge, La., 1977), II, 1977, pp. 593 – 619 (1978). · Zbl 0417.57007
[65] C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z. 37 (1933), no. 1, 237 – 253 (German). · Zbl 0007.02806
[66] E. Woodruff, Decompositions of E, in Proceedings of the Georgia Topology Conference, 1977 (to appear).
[67] Samuel Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407 – 447. · Zbl 0061.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.