×

Discrete Sobolev spaces and regularity of elliptic difference schemes. (English) Zbl 0733.65058

Author’s summary: This paper is concerned with the regularity of elliptic finite difference schemes with respect to discrete (fractional order) Sobolev spaces. For schemes arising from discretizations that are from the same “type” at the boundary as in the interior, it proves the discrete equivalent of J. Nečas’ regularity theorem for differential operators on Lipschitz regions [Rev. Roum. Math. Pures Appl. 9, 47-69 (1964; Zbl 0196.407)]. A different proof was given by W. Hackbusch [Ark. Mat. 19, 71-95 (1981; Zbl 0462.65058)]. However, the proof here is shorter and more transparent.
In case of a curved boundary usually different discretizations are applied in points near the boundary. For schemes of this kind, it is shown by using Nečas’ theorem for the corresponding “unperturbed” scheme, that “minimal” regularity implies the stronger regularity from Nečas’ theorem. Finally, conditions sufficient for minimal regularity are given.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35J40 Boundary value problems for higher-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] R. A. ADAMS, Sobolev spaces, Academie Press, New York, 1975. Zbl0314.46030 MR450957 · Zbl 0314.46030
[2] J. P. AUBIN, Approximation of elliptic boundary-value problems, Wiley-Inter-scienee, New York, 1972. Zbl0248.65063 MR478662 · Zbl 0248.65063
[3] K. P. BUBE and J. C. STRIKWERDA, Interior regularity estimates for elliptic systems of difference equations, SIAM J. Numer. Anal. 20 (1983), 653-670. Zbl0561.65070 MR708449 · Zbl 0561.65070 · doi:10.1137/0720044
[4] W. HACKBUSCH, Convergence of Multi-Grid Iterations Applied to Difference Equations, Math. Comp. 34 (1980), 425-440. Zbl0422.65020 MR559194 · Zbl 0422.65020 · doi:10.2307/2006094
[5] W. HACKBUSCH, On the regularity of difference schemes, Ark. Mat (1981), 71-95. Zbl0462.65058 MR625538 · Zbl 0462.65058 · doi:10.1007/BF02384470
[6] W. HACKBUSCH, Analysis of discretizations by the concept of discrete regularity. In : The Mathematics of Finite Elements and Applications IV-MAFELAP 1981 (J.R. Whiteman, ed.) 369-376, Academic Press, London, 1982. Zbl0531.65053 · Zbl 0531.65053
[7] W. HACKBUSCH, On the regularity of difference schemes, Part II, Regularity estimates for linear and nonlinear problems, Ark. Mat 21 (1983), 3-28. Zbl0535.65071 MR706637 · Zbl 0535.65071 · doi:10.1007/BF02384298
[8] W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985. Zbl0595.65106 · Zbl 0595.65106
[9] W. HACKBUSCH, Theorie and Numerik elliptischer Differentialgleichungen, B. G. Teubner, Stuttgart, 1986. Zbl0609.65065 · Zbl 0609.65065
[10] J. NEČAS, Sur la coercivité des formes sesquilinéaires, elliptiques, Rev. Roumaine Math. Pures Appl. 9 (1964), 47-69. Zbl0196.40701 MR179457 · Zbl 0196.40701
[11] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Universty Press, Princeton, New Jersey, 1970. Zbl0207.13501 MR290095 · Zbl 0207.13501
[12] [12] F. STUMMEL, Elliptische Differenzenoperatoren unter Dirichletrandbedingungen, Math. Z. 97 (1967), 169-211. Zbl0149.07202 MR224302 · Zbl 0149.07202 · doi:10.1007/BF01111697
[13] V. THOMÉE, Elliptic Difference Operators and Dirichet’s Problem, Contributions to Differential Equations 3 (1964), 301-324. Zbl0143.38304 MR163444 · Zbl 0143.38304
[14] V. THOMEE and B. WESTERGEN, Elliptic Difference Equations and Interior Regularity, Numer. Math. 11 (1968), 196-210. Zbl0159.38204 MR224303 · Zbl 0159.38204 · doi:10.1007/BF02161842
[15] J. WLOKA, Partielle Differentialgleichungen, B. G. Teubner, Stuttgart, 1982. Zbl0482.35001 MR652934 · Zbl 0482.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.