zbMATH — the first resource for mathematics

Tolerances, interval orders, and semiorders. (English) Zbl 0809.06001
The concept of an interval order was introduced by P. C. Fishburn as an irreflexive relation \(P\) on a set \(X\) satisfying the so-called interval- order condition: if \(xPy\) and \(zPw\), then \(xPw\) or \(zPy\). A semiorder is an interval order \(P\) satisfying: if \(xPy\) and \(yPz\), then \(xPw\) or \(wPz\) for each \(w\) of \(X\). The paper discusses interval orders and semiorders from the viewpoint of tolerance relations on lattices. By concentrating on properties of the associated indifference relations, it is possible to characterize interval orders as meet-tolerances and semiorders as lattice-tolerances on a chain. Some considerations are addressed to partial interval orders and semiorders, and they are related to certain tolerances on a poset.
Reviewer: I.Chajda (Přerov)

06A06 Partial orders, general
06B10 Lattice ideals, congruence relations
Full Text: EuDML
[1] H.-J. Bandelt: Tolerance relations on lattices. Bulletin Australian Mathematical Society 23 (1981), 367-381. · Zbl 0449.06005
[2] H.-J. Bandelt: Toleranzrelationen als Galoisverbindungen. Acta Universitatis Szegediensis. Acta Scientarum Mathematicarum 46 (1983), 55-58. · Zbl 0535.06004
[3] G. Birkhoff: Lattice theory, 3rd ed. American Math. Society, Providence, 1967. · Zbl 0153.02501
[4] J.-P. Doignon: Partial structures of preference. Nonconventional preference relations in decision making, M. Roubens and J. Kacprzyk (eds.), Springer-Verlag, Berlin, 1982.
[5] J.-P. Doignon, A. Ducamp and J.-C. Falmagne: On the separation of two relations by a biorder or a semiorder. Mathematical Social Sciences 13 (1987), 1-18. · Zbl 0611.90005
[6] P. C. Fishburn: Interval indifference with unequal indifference intervals. Journal of Mathematical Psychology 7 (1970), 144-149. · Zbl 0191.31501
[7] P. C. Fishburn: Interval orders and interval graphs. Wiley-Interscience, New York, 1985. · Zbl 0551.06001
[8] L. Guttman: A basis for scaling quantitative data. American Sociological Review 9 (1944), 139-150.
[9] M. F. Janowitz: Tolerances and congruences on lattices. Czechoslovak Mathematics Journal 36 (III) (1986), 108-115. · Zbl 0598.06004
[10] K. H. Kim, D. G. Rogers and F. W. Roush: Similarity measures and semiorders. Proceedings of the 10th Southeast Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantuim XXII-XXIV, Utilitas Mathematica, Winnipeg, 1978. · Zbl 0424.05004
[11] R. D. Luce: Semiorders and a theory of utility discrimination. Econometrica 24 (1956), 178-191. · Zbl 0071.14006
[12] F. S. Roberts: Measurement theory. Encyclopedia of Mathematics and its Applications, (Vol. 7), Addison Wesley, Reading, MA, 1979. · Zbl 0432.92001
[13] I. G. Rosenberg and D. Schweigert: Compatible orderings and tolerances of lattices. orders: Description and Roles, M. Pouzet and D. Richard (eds.), North-Holland, Amsterdam, 1982. · Zbl 0551.06011
[14] B. Roy: Préférence, indifférence, incomparabilité. Documents du LAMSADE, No. 9, Université de Paris-Dauphine, 1980.
[15] M. Roubens and Ph. Vincke: A definition of partial interval orders. Trends in Mathematical Psychology, E. Degreef and J. van Buggenhaut (eds.), North-Holland, Amsterdam, 1984. · Zbl 0541.92026
[16] N. Weiner: Contribution to the theory of relative position. Proceedings Cambridge Philosophical Society 17 (1914), 441-449. · JFM 45.1150.10
[17] E. C. Zeeman: The topology of the brain and visual perception. The topology of 3-manifolds, M. K. Fort (ed.), Prentice-Hall, Englewood Cliffs, 1961.
[18] B. Zelinka: Tolerance in algebraic structures. Czechoslovak Mathematical Journal 20 (1970), 240-256. · Zbl 0197.01002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.