×

Elastic wave up/down decomposition in inhomogeneous and anisotropic media: An operator approach and its approximations. (English) Zbl 0926.74044

Summary: A structural operator approach to the up/down decomposition of elastic waves in inhomogeneous and anisotropic media is presented. First, the up/down decomposition is carried out; next, a decomposition of the wave field into its polarization constitutents is worked out. The procedure is discussed in detail for the class of orthorhombic media and includes lateral variations. The high-frequency approximation to the operator approach is shown to be amenable to matrix manipulations in the horizontal Fourier transform domain. Two-level parabolic approximations are carried out to find sparse matrix (finite-difference) representations of the relevant operators. Finally, the space-time peculiarities and artifacts associated with the parabolic approximation to the particle velocity of the wave motion generated by a point force in a homogeneous and isotropic solid are discussed.

MSC:

74J10 Bulk waves in solid mechanics
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] de Hoop, A. T.; Stam, H. J., Time-domain reciprocity theorems for elastodynamic wave fields in solids with relaxation and their application to inverse problems, Wave Motion, 10, 479-489 (1988) · Zbl 0656.73019
[2] Claerbout, J. F., Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure, Geoph., 35, 407-418 (1970)
[3] Kitchenside, P. W., 2-D anisotropic migration in the space-frequency domain, J. Seismic Exploration, 2, 7-22 (1993)
[4] de Hoop, M. V., Directional decomposition of transient acoustic wave fields (1992), Delft University Press: Delft University Press Delft
[5] Coates, R. T.; Chapman, C. H., Generalized Born scattering of elastic waves in 3-D media, Geophys. J. Int., 107, 231-263 (1991)
[6] de Hoop, M. V.; de Hoop, A. T., Scalar space-time waves in their spectral domain first- and second-order Thiele approximations, Wave Motion, 15, 229-265 (1992) · Zbl 0786.35085
[7] de Hoop, M. V.; de Hoop, A. T., Interface reflection of spherical acoustic waves in the first- and second-order rational parabolic approximations and their artifacts, J. Acoust. Soc. Am., 93, 22-35 (1993)
[8] de Hoop, A. T., A modification of Cagniard’s method for solving seismic pulse problems, Appl. Sci. Res., B8, 349-356 (1960) · Zbl 0100.44208
[9] van der Hijden, J. H.M. T., Propagation of transient elastic waves in stratified anisotropic media (1987), North-Holland: North-Holland Amsterdam · Zbl 0667.73020
[10] Hudson, J. A., A parabolic approximation for elastic waves, Wave Motion, 2, 207-214 (1980) · Zbl 0471.73028
[11] Hudson, J. A., A parabolic approximation for surface waves, Geophys. J. Roy. Astron. Soc., 67, 755-770 (1981) · Zbl 0466.73018
[12] Haines, A. J., A phase-front method — I. Narrow-frequency-band SH waves, Geophys. J. Roy. Astron. Soc., 72, 783-808 (1983) · Zbl 0539.73014
[13] Landers, T.; Claerbout, J. F., Numerical calculations of elastic waves in laterally inhomogeneous media, J. Geophys. Res., 77, 1476-1482 (1972)
[14] McCoy, J. J., A parabolic theory of stress wave propagation through inhomogeneous linearly elastic solids, J. Appl. Mech., 44, 462-468 (1977) · Zbl 0497.73032
[15] Wales, S. C.; McCoy, J. J., A comparison of parabolic wave theories for linearly elastic solids, Wave Motion, 5, 99-113 (1983) · Zbl 0507.73024
[16] Wales, S. C., A vector parabolic equation model for elastic propagation, (Akal, T.; Berkson, J. M., Ocean seismo-acoustics, proceedings of a SACLANT ASW Research Center Symposium La Spezia (1986), Plenum Press: Plenum Press New York), 57-66
[17] Wapenaar, C. P.A.; Berkhout, A. J., Elastic wave field extrapolation (1989), Elsevier: Elsevier Amsterdam
[18] Corones, J. P.; DeFacio, B.; Krueger, R. J., Parabolic approximations to the time-dependent elastic wave equation, J. Math. Phys., 23, 577-586 (1982) · Zbl 0512.35051
[19] Wapenaar, C. P.A.; Haimé, G. C.; Berkhout, A. J., Elastic wavefield decomposition: before or after extrapolation?, (61st Ann. Internat. Mtg. Soc. Expl. Geophys.. 61st Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts (1991)), 1001-1004
[20] Collins, M. D., Higher-order and elastic parabolic equations for wave propagation in the ocean, (Computational Acoustics, Vol. 3 (1990), North-Holland: North-Holland Amsterdam), 167-184
[21] Wetton, B.; Brooke, G., One-way seismo-acoustic propagation in elastic waveguides with range-dependent material parameters, (Computational Acoustics, Vol. 3 (1990), North-Holland: North-Holland Amsterdam), 275-288
[22] Musgrave, M. J.P., Crystal Acoustic (1970), Holden Day: Holden Day San Francisco · Zbl 0201.27601
[23] Auld, B. A., Acoustic Fields and Waves in Solids (1973), Wiley: Wiley New York
[24] Thompson, C.; Clarke, T.; Garmany, J., Observations on seismic wave equation and reflection coefficient symmetries in stratified media, Geophys. J. Roy. Astron. Soc., 86, 675-686 (1986)
[25] Shubin, M. A., Pseudodifferential Operators and Spectral Theory (1987), Springer: Springer Berlin · Zbl 0616.47040
[26] Schoenberg, M.; Protazio, J., ‘Zoeppritz’ rationalized and generalized to anisotropy, J. Seismic Exploration, 1, 125-144 (1992)
[27] Hildebrand, F. B., Introduction to Numerical Analysis (1956), McGraw-Hill: McGraw-Hill New York · Zbl 0070.12401
[28] Helbig, K.; Schoenberg, M., Anomalous polarization of elastic waves in transversely isotropic media, J. Acoust. Soc. Am., 81, 1235-1245 (1987)
[29] Payton, R. G., Elastic Wave Propagation In Transversely Anisotropic Media (1983), Martinus Nijhoff: Martinus Nijhoff The Hague · Zbl 0519.73008
[30] Aki, K.; Richards, P. G., Quantitative Seismology (1980), Freeman: Freeman San Francisco
[31] Achenbach, J. D., Wave Propagation In Elastic Solids (1973), North-Holland: North-Holland Amsterdam · Zbl 0268.73005
[32] Miklowitz, J., The Theory of Elastic Waves and Wave Guides (1978), North-Holland: North-Holland Amsterdam
[33] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (1959), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0063.03651
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.