×

On the density of geometrically finite Kleinian groups. (English) Zbl 1055.57020

Acta Math. 192, No. 1, 33-93 (2004); erratum ibid. 219, No. 1, 17-19 (2017).
According to the Bers-Sullivan-Thurston density conjecture, a complete hyperbolic 3-manifold \(M\) with finitely generated fundamental group is a limit of geometrically finite hyperbolic 3-manifolds.
The main result of this highly technical and elegant paper is the following. Let \(M\) be a complete hyperbolic 3-manifold with finitely generated fundamental group, incompressible ends and no cusps. Then \(M\) is an algebraic limit of geometrically finite hyperbolic 3-manifolds.
A manifold \(M\) is said to be geometrically finite if its convex core, the minimal convex subset of \(M\), has finite volume. \(M = \mathbb H^3 / \Gamma\) is an algebraic limit of \(M_i = \mathbb H^3 / \Gamma_i\) if there are isomorphisms \(\rho_i : \Gamma \to \Gamma_i\) so that after conjugating the groups \(\Gamma_i\) in \(\text{ Isom}^{+} (\mathbb H^3)\) if necessary, we have \(\rho_i(\gamma) \to \gamma\) for each \(\gamma \in \Gamma\). \(M\) has incompressible ends if it is homotopy equivalent to a compact submanifold with incompressible boundary. To obtain the result, the authors develop the deformation theory of 3-dimensional hyperbolic cone-manifolds and prove the drilling theorem. The principal application of the cone-deformation theory is its ability to control the geometric effect of a cone-deformation that decreases the cone-angle at the singular locus when the singular locus is a sufficiently short geodesic.

MSC:

57M50 General geometric structures on low-dimensional manifolds
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] [Ah]Ahlfors, L. V., Finitely generated Kleinian groups.Amer. J. Math., 86 (1964), 413–429. · Zbl 0133.04201 · doi:10.2307/2373173
[2] [AC1]Anderson, J. W. &Canary, R. D., Algebraic limits of Kleinian groups which rearrange the pages of a book.Invent. Math., 126 (1996), 205–214. · Zbl 0874.57012 · doi:10.1007/s002220050094
[3] [AC2]—-, Cores of hyperbolic 3-manifolds and limits of Kleinian groups.Amer. J. Math., 118 (1996), 745–779. · Zbl 0863.30048 · doi:10.1353/ajm.1996.0031
[4] [An]Anderson, M. T., The Dirichlet problem at infinity for manifolds of negative curvature.J. Differential Geom., 18 (1983), 701–721. · Zbl 0541.53036
[5] [BP]Benedetti, R. &Petronio, C.,Lectures on Hyperbolic Geometry. Springer-Verlag, Berlin, 1992. · Zbl 0768.51018
[6] [Be]Bers, L., On boundaries of Teichmüller spaces and on Kleinian groups, I.Ann. of Math., 91 (1970), 570–600. · Zbl 0197.06001 · doi:10.2307/1970638
[7] [Bon1]Bonahon, F., Bouts des variétés hyperboliques de dimension 3.Ann. of Math., 124 (1986), 71–158. · Zbl 0671.57008 · doi:10.2307/1971388
[8] [Bon2]–, The geometry of Teichmüller space via geodesic currents.Invent. Math., 92 (1988), 139–162. · Zbl 0653.32022 · doi:10.1007/BF01393996
[9] [Bow1]Bowditch, B. H., Some results on the geometry of convex hulls in manifolds of pinched negative curvature.Comment. Math. Helv., 69 (1994), 49–81. · Zbl 0967.53022 · doi:10.1007/BF02564474
[10] [Bow2]–, Geometrical finiteness with variable negative curvature.Duke Math. J., 77 (1995), 229–274. · Zbl 0877.57018 · doi:10.1215/S0012-7094-95-07709-6
[11] [Bri]Bridgeman, M., Average bending of convex pleated planes in hyperbolic three-space.Invent. Math., 132 (1998), 381–391. · Zbl 0912.30028 · doi:10.1007/s002220050227
[12] [Bri]Bridson, M. R. &Haefliger, A.,Metric Spaces of Non-Positive Curvature. Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[13] [Bro1]Brock, J. F., Continuity of Thurston’s length function.Geom. Funct. Anal., 10 (2000), 741–797. · Zbl 0968.57011 · doi:10.1007/PL00001637
[14] [Bro2]–, Boundaries of Teichmüller spaces and end-invariants for hyperbolic 3-manifolds.Duke Math. J., 106 (2001), 527–552. · Zbl 1011.30042 · doi:10.1215/S0012-7094-01-10634-0
[15] [Bro3]–, Iteration of mapping classes and limits of hyperbolic 3-manifolds.Invent. Math., 143 (2001), 523–570. · Zbl 0969.57011 · doi:10.1007/PL00005799
[16] [Bro4]–, The Wiel-Petersson metric and volumes of 3-dimensional hyperbolic convex cores.J. Amer. Math. Soc., 16 (2003), 495–535. · Zbl 1059.30036 · doi:10.1090/S0894-0347-03-00424-7
[17] [BB]Brock, J. F. &Bromberg, K. W., Cone manifolds and the density conjecture, inKleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), pp. 75–93. London Math. Soc. Lecture Note Ser., 299. Cambridge Univ. Press, Cambridge, 2003.
[18] [BBES]Brock, J., Bromberg, K., Evans, R. &Souto, J., Tameness on the boundary and Ahlfors’ measure conjecture.Publ. Math. Inst. Hautes Études Sci., 98 (2003), 145–166. · Zbl 1060.30054
[19] [BCM]Brock, J. F., Canary, R. D. & Minsky, Y. N., The classification of Kleinina surface groups, II: the ending lamination conjecture. In preparation. · Zbl 1253.57009
[20] [Brm1]Bromberg, K. W., Projective structures with degenerate holonomy and the Bers density conjecture. Preprint, 2002, arXiv: mathGT/0211402.
[21] [Brm2]Bromberg, K. W. Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives. To appear inJ. Amer. Math. Soc. · Zbl 1061.30037
[22] [Brm3]–, Rigidity of geometrically finite hyperbolic cone-manifolds.Geom. Dedicata, 105 (2004), 143–170. · Zbl 1057.53029 · doi:10.1023/B:GEOM.0000024664.84428.e7
[23] [BM]Brooks, R. &Matelski, J. P., Collars in Kleinian groups.Duke Math. J., 49 (1982), 163–182. · Zbl 0484.30029 · doi:10.1215/S0012-7094-82-04911-0
[24] [C1]Canary, R. D., Ends of hyperbolic 3-manifolds.J. Amer. Math. Soc., 6 (1993), 1–35. · Zbl 0810.57006
[25] [C2]–, A covering theorem for hyperbolic 3-manifolds and its applications.Topology, 35 (1996), 751–778. · Zbl 0863.57010 · doi:10.1016/0040-9383(94)00055-7
[26] [CCHS]Canary, R. D., Culler, M., Hersonsky, S. &Shalen, P. B., Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups.J. Differential Geom., 64 (2003), 57–109. · Zbl 1069.57004
[27] [CEG]Canary, R. D., Epstein, D. B. A. &Green, P., Notes on notes of Thurston, inAnalytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), pp. 3–92. London Math. Soc. Lecture Note Ser., 111, Cambridge Univ. Press, Cambridge, 1987.
[28] [EM]Epstein, D. B. A. &Marden, A., Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, inAnalytical and Geometric Aspects of Hyperbolic Space (Conventry/Durham, 1984), pp. 113–253. London Math. Soc. Lecture Note Ser., 111. Cambridge Univ. Press, Cambridge, 1987.
[29] [FLP]Fathi, A., Laudenbach, F. &Poénaru, V.,Travaux de Thurston sur les surfaces. Astérisque, 66–67. Soc. Math. France, Paris, 1979.
[30] [GT]Gromov, M. &Thurston, W. P., Pinching constants for hyperbolic manifolds.Invent. Math., 89 (1987), 1–12. · Zbl 0646.53037 · doi:10.1007/BF01404671
[31] [Ha]Harvey, W. J., Boundary structure of the modular group, inRiemann Surfaces and Related Topics (Stony Brook, NY, 1978), pp. 245–251. Ann. of Math. Stud., 97. Princeton Univ. Press, Princeton, NJ, 1981.
[32] [He]Hempel, J.,3-Manifolds. Ann. of Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976. · Zbl 0345.57001
[33] [HK1]Hodgson, C. D. &Kerckhoff, S. P., Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery.J. Differential Geom., 48 (1998), 1–59. · Zbl 0919.57009
[34] [HK2]Hodgson, C. D. & Kerckhoff, S. P., Universal bounds for hyperbolic Dehn surgery. Preprint, 2002. · Zbl 1087.57011
[35] [HK3]—-, Harmonic deformations of hyperbolic 3-manifolds, inKleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), pp. 41–73. London Math. Soc. Lecture Note Ser., 299. Cambridge Univ. Press, Cambridge, 2003.
[36] [HK4]Hodgson, C. D. & Kerckhoff, S. P. The shape of hyperbolic Dehn surgery space. In preparation. · Zbl 1144.57015
[37] [JM]Jørgensen, T. &Marden, A., Algebraic and geometric convergence of Kleinian groups.Math. Scand., 66 (1990), 47–72. · Zbl 0738.30032
[38] [KT]Kerckhoff, S. &Thurston, W. P., Non-continuity of the action of the modular group at Bers’ boundary of Teichmüller space.Invent. Math., 100 (1990), 25–47. · Zbl 0698.32014 · doi:10.1007/BF01231179
[39] [Kl]Klarreich, E., The boundary at infinity of the curve complex and the relative Teichmüller space. Preprint, 1999. · Zbl 1011.30035
[40] [Kr]Kra, I., On spaces of Kleinian groups.Comment. Math. Helv., 47 (1972), 53–69. · Zbl 0239.30020 · doi:10.1007/BF02566788
[41] [Mc1]McMullen, C., Iteration on Teichmüller space.Invent. Math., 99 (1990), 425–454. · Zbl 0695.57012 · doi:10.1007/BF01234427
[42] [Mc2]–, Cusps are dense.Ann. of Math., 133 (1991), 217–247. · Zbl 0718.30033 · doi:10.2307/2944328
[43] [Mc3]–,Renormalization and 3-Manifolds Which Fiber Over the Circle. Ann. of Math. Stud., 142. Princeton Univ. Press, Princeton, NJ, 1996. · Zbl 0860.58002
[44] [Ma]Marden, A., The geometry of finitely generated Kleinian groups.Ann. of Math., 99 (1974), 383–462. · Zbl 0282.30014 · doi:10.2307/1971059
[45] [MM1]Masur, H. A. &Minsky, Y. N., Geometry of the complex of curves, I: Hyperbolicity.Invent. Math., 138 (1999), 103–149. · Zbl 0941.32012 · doi:10.1007/s002220050343
[46] [MM2]—-, Geometry of the complex of curves, II: Hierarchical structure.Geom. Funct. Anal., 10 (2000), 902–974. · Zbl 0972.32011 · doi:10.1007/PL00001643
[47] [Mi1]Minsky, Y. N., On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds.J. Amer. Math. Soc., 7 (1994), 539–588. · Zbl 0808.30027
[48] [Mi2]–, The classification of punctured-tours groups.Ann. of Math., 149 (1999), 559–626. · Zbl 0939.30034 · doi:10.2307/120976
[49] [Mi3]–, Kleinian groups and the complex of curves.Geom. Topol., 4 (2000), 117–148. · Zbl 0953.30027 · doi:10.2140/gt.2000.4.117
[50] [Mi4]–, Bounded geometry for Kleninian groups.Invent. Math., 146 (2001), 143–192. · Zbl 1061.37026 · doi:10.1007/s002220100163
[51] [Mi5]Minsky, Y. N., The classification of Kleinian surface groups, I: A priori bounds. Preprint, 2002.
[52] [Mo]Mosher, L., Stable Techmüller quasigeodesics and ending laminations.Geom. Topol., 7 (2003), 33–90. · Zbl 1021.57009 · doi:10.2140/gt.2003.7.33
[53] [Oh1]Ohshika, K., Ending laminations and boundaries for deformation spaces of Kleinian groups.J. London Math. Soc., 42 (1990), 111–121. · Zbl 0715.30032 · doi:10.1112/jlms/s2-42.1.111
[54] [Oh2]–, Limits of geometrically tame Kleinian groups.Invent. Math., 99 (1990), 185–203. · Zbl 0691.30038 · doi:10.1007/BF01234416
[55] [Ot1]Otal, J.-P., Sur le nouage des géodésiques dans les variétés hyperboliques.C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 847–852.
[56] [Ot2]–,Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3. Astérisque, 235. Soc. Math. France, Paris, 1996.
[57] [Ot3]–, Les géodésiques fermées d’une variété hyperbolique en tant que noeds, inKleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), pp. 95–104. London Math. Soc. Lecture Note Ser., 299. Cambridge Univ. Press, Cambridge, 2003.
[58] [Sc]Scott, G. P., Compact submanifolds of 3-manifolds.J. London Math. Soc., 7 (1973), 246–250. · Zbl 0266.57001 · doi:10.1112/jlms/s2-7.2.246
[59] [Su1]Sullivan, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, inRiemann Surfaces and Related Topics (Stony Brook, NY, 1978), pp. 465–496. Ann. of Math. Stud., 97. Princeton Univ. Press, Princeton, NJ, 1981.
[60] [Su2]–, Quasiconformal homeomorphisms and dynamics, II: Structural stability implies hyperbolicity for Kleinina groups.Acta Math., 155 (1985), 243–260. · Zbl 0606.30044 · doi:10.1007/BF02392543
[61] [T1]Thurston, W. P.,The Geometry and Topology of Three-Manifolds. Princeton Lecture Notes. Princeton, NJ, 1979.
[62] [T2]–, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry.Bull. Amer. Math. Soc., 6 (1982), 357–381. · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[63] [T3]–, Hyperbolic structures on 3-manifolds, I: Deformation of acylindrical manifolds.Ann. of Math., 124 (1986), 203–246. · Zbl 0668.57015 · doi:10.2307/1971277
[64] [T4]Thurston, W. P., Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle. Preprint, 1986. arXiv: math. GT/9801045.
[65] [T5]Thurston, W. P., Hyperbolic structures on 3-manifolds, III: Deformation of 3-manifolds with incompressible boundary. Preprint, 1986. arXiv: mathGT/9801058.
[66] [T6]Thurston, W. P., Minimal stretch maps between hyperbolic surfaces. Preprint, 1986. arXiv: mathGT/9801039.
[67] [T7]–,Three-Dimensional Geometry and Topology. Vol. 1. Princeton Math. Ser., 35. Princeton Univ. Press, Princeton, NJ, 1997.
[68] [W]Waldhausen, F., On irrducible 3-manifolds which are sufficiently large.Ann. of Math., 87 (1968), 56–88. · Zbl 0157.30603 · doi:10.2307/1970594
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.