×

Existence of multivariate max-universal laws. (English) Zbl 1088.60047

A multivariate distribution function \(F:R^d\to[0,1]\) belongs to a domain of partial max-attraction of d.f. \(G\) iff for some \(k_n\to\infty\), \(a_n\in R\), \(b_n\in R^d\), \((F(a_n x+b_n))^{k_n}\to G(x)\) at all continuity points \(x\) of \(G\). The author demonstrates that there exists a max-universal d.f. \(F\) which belongs to partial domains of max-attraction of all max-infinitely divisible laws \(G\). The proof follows the outline of the corresponding result for sums of i.i.d. random vectors.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60E99 Distribution theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balkema, A.A. and Resnick, S.I., ”Max-infinite divisibility,” J. Appl. Probab. 14, 309–319, (1977). · Zbl 0366.60025 · doi:10.2307/3213001
[2] Baránska, J., ”Universal Doeblin distributions in a Hilbert space,” Bull. Acad. Pol. Sci., Ser. Sci. Math. 26, 343–346, (1977).
[3] Becker-Kern, P., ”Max-semistable hemigroups: structure, domains of attraction and limit theorems with random sample size,” Probab. Math. Stat. 21, 441–465, (2001). · Zbl 1003.60054
[4] Breiman, L., Probability, Addison-Wesley, Reading, 1968.
[5] Canto e Castro, L., de Haan, L., and Temido, M.G., ”Rarely observed sample maxima,” Theory Probab. Appl. 45, 658–662, (2000). · Zbl 0992.60055 · doi:10.1137/S0040585X97978658
[6] de Haan, L., On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts, Vol. 32, Mathematisch Centrum, Amsterdam, 1970. · Zbl 0226.60039
[7] Doeblin, W., ”Sur l’ensemble de puissances d’une loi de probabilité,” Stud. Math. 9, 71–96, (1940). · Zbl 0063.01128
[8] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1971. · Zbl 0219.60003
[9] Galambos, J., The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, 1987. · Zbl 0634.62044
[10] Gnedenko, B.V., ”Sur la distribution limité du terme d’une série aléatoire,” Ann. Math. 44, 423–453, (1943). · Zbl 0063.01643 · doi:10.2307/1968974
[11] Green, R.F., ”Partial attraction of maxima,” J. Appl. Probab. 13, 159–163, (1976). · Zbl 0337.60020 · doi:10.2307/3212678
[12] Grinevich, I.V., ”Domains of attraction of the max-semistable laws under linear and power normalizations,” Theory Probab. Appl. 38, 640–650, (1993). · Zbl 0835.60012 · doi:10.1137/1138064
[13] Grinevich, I.V., ”Max-semistable laws under linear and power normalization,” In: Stability Problems for Stochastic Models (V.M. Zolotarev et al., eds), TVP/VSP, Moscow, 61–70, (1994). · Zbl 0849.60045
[14] Große-Erdmann, K.-G., ”Universal families and hypercyclic operators,” Bull. Am. Math. Soc., New Ser. 36, 345–381, (1999). · Zbl 0933.47003 · doi:10.1090/S0273-0979-99-00788-0
[15] Hazod, W., ”Probabilities on contractible locally compact groups: the existence of universal distributions in the sense of W. Doeblin,” Ann. Inst. Henri Poincaré 29, 339–355, (1993). · Zbl 0812.60013
[16] Heyer, H., Probability Measures on Locally Compact Groups, Springer, Berlin, 1977. · Zbl 0376.60002
[17] Meerschaert, M.M. and Scheffler, H.P., Limit Distributions for Sums of Independent Random Vectors, Wiley, New York, 2001. · Zbl 0990.60003
[18] Megyesi, Z. ”Domains of geometric partial attraction of max-semistable laws: structure, merge and almost sure limit theorems,” J. Theor. Probab. 15, 973–1005, (2002). · Zbl 1027.60008 · doi:10.1023/A:1020692805345
[19] Mejzler, D., ”On a certain class of limit distributions and their domain of attraction,” Trans. Am. Math. Soc. 117, 205–236, (1965). · Zbl 0178.54601 · doi:10.1090/S0002-9947-1965-0171298-6
[20] Pancheva, E.I., ”Self decomposable distributions for maxima of independent random vectors,” Probab. Theory Relat. Fields 84, 267–278, (1990). · Zbl 0665.60023 · doi:10.1007/BF01197848
[21] Pancheva, E.I., ”Convergence of types under monotonous mapping,” Theory Probab. Appl. 38, 551–556, (1993). · Zbl 0816.60024 · doi:10.1137/1138056
[22] Pancheva, E.I., ”Multivariate extreme value limit distributions under monotone normalization,” In: Stability Problems for Stochastic Models (V.M. Zolotarev, et al. eds), TVP/VSP, Moscow, 179–196, (1994a). · Zbl 0846.60051
[23] Pancheva, E.I., ”Extreme value limit theory with nonlinear normalization,” In: Extreme Value Theory and Applications (J. Galambos, et al. eds.), Kluwer Acad. Publ., Dordrecht, 305–318, (1994b). · Zbl 0846.60051
[24] Phuc, H.D., ”Universal distribution for infinitely divisible distributions on Frèchet space,” Ann. Inst. Henri Poincaré 17, 213–217, (1981).
[25] Phuc, H.D., ”On Doeblin‘s theorem for random measures and point processes,” Bull. Acad. Pol. Sci., Ser. Sci. Math. 30, 197–204, (1982). · Zbl 0543.60059
[26] Phuc, H.D., ”Semi-attraction domains of semistable laws on topological vector spaces,” Acta Math. Vietnam 12, 39–50, (1987). · Zbl 0678.60003
[27] Resnick, S.I., Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987. · Zbl 0633.60001
[28] Temido, M.G., ”New limiting distributions of maxima of independent random variables,” Port. Math. 60, 379–388, (2003). · Zbl 1042.60032
[29] Van Thu, N., ”A new version of Doeblin’s theorem,” Ann. Inst. Henri Poincaré 17, 213–217, (1981). · Zbl 0459.60015
[30] Weissman, I.,”On location and scale functions of a class of limiting processes with application to extreme value theory,” Ann. Probab. 3, 178–181, (1975). · Zbl 0303.60021 · doi:10.1214/aop/1176996460
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.