×

zbMATH — the first resource for mathematics

New results in the theory of multivalued mappings. I: Topological characteristics and solvability of operator relations. (English. Russian original) Zbl 0711.55002
J. Sov. Math. 49, No. 1, 800-855 (1990); translation from Itogi Nauki Tekh., Ser. Mat. Anal. 25, 121-195 (1987).
See the review in Zbl 0635.55004.

MSC:
55M20 Fixed points and coincidences in algebraic topology
55M25 Degree, winding number
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. R. Abdullaev, ”On the existence of solutions of nonlinear operator equations,” Perm Polytechnic Inst., Perm (1981). (Manuscript deposited at VINITI, July 16, 1981, No. 3508-81 Dep.)
[2] M. A. Aizerman, ”The dynamic aspects of voting theory (survey),” Avtomat. Telemekh., No. 12, 103–118 (1981). · Zbl 0513.90004
[3] M. S. Aliev, ”On certain closed multivalued mappings,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1985), pp. 36–42.
[4] M. S. Aliev, E. B. Veliev, D. R. Gaidarov, F. S. Nasrulaev, and R. K. Ragimkhanov, ”Basic facts on topological spaces of closed subsets of a metric space,” Dagestan Univ., Makhachkala (1986). (Manuscript deposited at VINITI, April 8, 1986, No. 2495-B.)
[5] M. S. Aliev, E. B. Veliev, D. R. Gaidarov, F. S. Nasrulaev, and R. K. Ragimkhanov, ”Elements of the theory of closed-valued semicontinuous, continuous, and closed multivalued mappings,” Dagestan Univ., Makhachkala (1986). (Manuscript deposited at VINITI, June 17, 1986, No. 4442-B.)
[6] V. A. Alyakin, ”On the decomposition of multivalued set functions,” in: Functional Analysis. Theory of Operators [in Russian], Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk (1981), pp. 3–9. · Zbl 0525.28008
[7] B. I. Anan’ev and I. B. Baisakalov, ”On the existence of the solution of stochastic differential inclusions of a special form,” in: Estimation under Conditions of Uncertainty [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk (1982), pp, 10–18.
[8] L. Yu. Anapol’skii, ”On the stability of differential inclusions,” Differents. Uravn.,19, No. 4, 555–564 (1983).
[9] L. Yu. Anapol’skii, ”On periodic integral manifolds of relay inclusions,” in: Method of Lyapunov Functions in the Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 26–84.
[10] L. Yu. Anapol’skii, ”On periodic integral manifolds of relay systems with hysteresis,” in: Ninth Internat. Conf. on Nonlinear Oscillations (Kiev, Aug. 30-Sep. 6, 1981), Vol. 2, Kiev (1984), pp. 18–21.
[11] R. A. Angelov and S. M. Markov, ”On the existence of solutions of interval differential equations and inclusions,” in: Mathematics and Mathematical Education (Slnchev Bryag, 1981), Sofia (1981), pp. 36–101. · Zbl 0533.65054
[12] V. V. Arestov, ”The approximation of invariant operators,” Mat. Zametki,34, No. 1, 9–29 (1983). · Zbl 0595.41020
[13] S. M. Aseev, ”The approximation of semicontinuous multivalued mappings by continuous ones,” Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 3, 460–476 (1982). · Zbl 0512.54010
[14] S. M. Aseev, ”The existence of a differentiable single-valued branch of a multivalued mapping,” in: Some Questions of Applied Mathematics and Software [in Russian], Moscow (1982), pp. 36–39.
[15] S. M. Aseev, ”Quasilinear operators and their application to the theory of multivalued mappings,” Trudy Mat. Inst. Akad. Nauk SSSR,167, 25–52 (1985). · Zbl 0582.46048
[16] A. V. Babichev, A. G. Butkovskii, and N. L. Lepe, ”singular sets on phase portraits of dynamical systems with control. I,” Avtomat. Telemekh., No. 5, 24–31 (1986).
[17] L. E. Bazilevich, ”On the selection of the distance function to a compactum,” Visnik L’viv Univ. Ser. Mat. Mekh., No. 24, 54–59 (1985).
[18] V. A. Baidosov, ”On an approach to the definition of dynamical games in terms of generalized dynamical systems,” in: Optimal Control of Systems with Uncertain Information [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Inst. Mat. i Mekh., Sverdlovsk (1980), pp. 3–11.
[19] E. I. Balaban, ”On the approximate calculation of the Riemann integral of a multivalued mapping,” Zh. Vychisl. Mat. Mat. Fiz.,22, No. 2, 472–476 (1982).
[20] E. I. Balaban, ”On a problem in the theory of integration of set-valued mappings arising in connection with applications of the first direct method of L. S. Pontryagin in differential games,” in: Multistep, Differential, Noncooperative and Cooperative Games and Their Applications [in Russian], Kalinin. Gos. Univ., Kalinin (1982), pp. 3–18. · Zbl 0539.28004
[21] V. S. Balaganskii, ”The weak continuity of the metric projection onto bounded sets in Banach spaces,” Mat. Zametki,32, No. 5, 627–637 (1982).
[22] S. B. Barabash, ”On the continuity of an {\(\epsilon\)}-subdifferential mapping,” in: Mathematical Analysis of Models of Territorial Production Systems [in Russian], Nauka, Novosibirsk (1984), pp. 110–119.
[23] O. Ya. Benderskii and B. A. Rubshtein, ”Measurable fields of closed sets,” in: Materials of the Scientific Conference of Young Scientists of the Institute of Mathematics, Academy of Sciences of the UzSSR, Tashkent, Dec. 21, 1984, Tashkent (1985), pp. 9–11. (Manuscript deposited at VINITI, Dec. 19, 1985, No. 8756-B Dep.)
[24] N. Benkafadar, ”On the solvability of a certain class of integral inclusions,” Voronezh Univ., Voronezh (1982). (Manuscript deposited at VINITI, Aug. 3, 1982, No. 4210-82 Dep.)
[25] N. Benkafadar and B. D. Gel’man, ”On the quasidegrees of partially invertible multivalued vector fields,” Voronezh Univ., Voronezh (1981). (Manuscript deposited at VINITI, Feb. 18, 1982, No. 736-82 Dep.)
[26] N. Benkafadar and B. D. Gel’man, ”On the local degree of multivalued vector fields with Fredholm principal part,” Voronezh Univ., Voronezh (1982). (Manuscript deposited at VINITI, July 1, 1982, No. 3422-82 Dep.)
[27] N. Benkafadar and B. D. Gel’man, ”On homotopic properties of spaces of subsets,” in: Topological and Geometrical Methods in Mathematical Physics [in Russian], Voronezh (1983), pp. 111–115. · Zbl 0593.55001
[28] V. I. Berdyshev, ”The metric projection onto the class H({\(\Omega\)}),” Dokl. Akad. Nauk SSSR,266, No. 4, 777–779 (1982). · Zbl 0524.41019
[29] V. I. Berdyshev, ”Differential properties of the metric projection,” in: Constructive Function Theory ’81 (Varna 1981), Bulgar. Acad. Sci., Sofia (1983), pp. 34–37.
[30] V. I. Berdyshev, ”The stability of the element of best approximation,” in: Theory of Functions and Applications. Proceedings Saratov winter School, 1982, Part I, Saratov (1983), pp. 120–127.
[31] V. I. Berdyshev, ”Differentiability of the metric projection in a normed space,” in: Approximation of Functions by Polynomials and Splines [in Russian], Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk (1985), pp. 58–71.
[32] V. I. Blagodatskikh, ”The maximum principle for differential inclusions,” Trudy Mat. Inst. Akad. Nauk SSSR,166, 23–43 (1984). · Zbl 0569.34012
[33] V. I. Blagodatskikh and A. F. Filippov, ”Differential inclusions and optimal control,” Trudy Mat. Inst. Akad. Nauk SSSR,169, 194–252 (1985). · Zbl 0595.49026
[34] A. V. Bogatyrev, ”Continuous branches of multivalued mappings with nonconvex right-hand side,” Mat. Sb.,120 (162), No. 3, 344–353 (1983).
[35] A. V. Bogatyrev, ”Fixed points and properties of solutions of differential inclusions,” Izv. Akad. Nauk SSSR, Ser. Mat.,47, No. 4, 895–909 (1983). · Zbl 0537.34013
[36] V. G. Boltyanskii, ”The problem of optimization with change of phase space,” Differents. Uravn.,19, No. 3, 518–521 (1983).
[37] V. G. Bondarevskii and O. F. Borisenko, ”Conditions for the optimality of diference inclusions and discrete control systems with mixed constraints,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1982). (Manuscript deposited at VINITI, Aug. 4, 1983, No. 4301-83 Dep.)
[38] V. G. Bondarevskii, O. F. Borisenko, and L. I. Minchenko, ”On the properties of the maximum function on differentiable multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1983). (Manuscript deposited at VINITI, Nov. 23, 1983, No. 6214-83 Dep.)
[39] V. G. Bondarevskii and L. I. Minchenko, ”On the properties of differentiable multivalued mappings,” Kibernetika, No. 2, 77–79 (1986).
[40] O. F. Borisenko and L. I. Minchenko, ”On weakly uniform differentiable functions and multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1985). (Manuscript deposited at VINITI, Mar. 19, 1985, No. 1943-85 Dep.)
[41] O. F. Borisenko and L. I. Minchenko, ”Minimax conditions for problems with linear constraints,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1985). (Manuscript deposited at VINITI, May 4, 1985, No. 2918-85 Dep.)
[42] Yu. G. Borisovich, ”Global analysis and some problems for differential equations,” in: Differential Equations and Applications, Part I [in Russian], Tech. Univ., Ruse (1982), pp. 98–118.
[43] Yu. G. Borisovich, ”On the solvability of nonlinear equations with Fredholm operators,” in: Geometry and Topology in Global Nonlinear Problems [in Russian], Voronezh State Univ., Voronezh (1984), pp. 3–22.
[44] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskii, ”Topological methods in the theory of fixed points of multivalued mappings,” Usp. Mat. Nauk,35, No. 1 (211), 59–126 (1980).
[45] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskii, ”Multivalued mappings,” Itogi Nauki i Tekhniki, Ser. Mat. Analiz,19, 127–230 (1982).
[46] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskii, ”Multivalued analysis and operator inclusions,” Itogi Nauki i Tekhniki, Ser. Sov. Probl. Mat. Noveishie Dostizheniya,29, 151–211 (1986).
[47] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multivalued Mappings [in Russian], Voronezh Univ., Voronezh (1986).
[48] Yu. G. Borisovich and M. N. Krein, ”On the topological degree of semidifferentiable Fredholm mappings with perturbations,” Voronezh Univ., Voronezh (1984). (Manuscript deposited at VINITI, Sep. 24, 1984, No. 6384-84 Dep.)
[49] I. U. Bronshtein and A. Ya. Kopanskii, ”Chain recurrence in dispersive dynamical systems. I,” Mat. Issled., No. 77, 3–12 (1984).
[50] I. U. Bronshtein and A. Ya. Kopanskii, ”Chain recurrence in dispersive dynamical systems. II,” Mat. Issled., No. 80, 32–47 (1985).
[51] S. A. Brykalov, ”The existence of solutions of boundary value problems for functional-differential inclusions,” Ural Univ., Sverdlovsk (1982). (Manuscript deposited at VINITI, July 8, 1982, No. 3633-82 Dep.) · Zbl 0518.34062
[52] S. A. Brykalov, ”Boundary value problems for functional-differential inclusions,” Dokl. Akad. Nauk SSSR,266, No. 4, 784–787 (1982). · Zbl 0518.34062
[53] S. A. Brykalov, ”Some boundary value problems for differential equations and inclusions,” Dokl. Akad. Nauk SSSR,279, No. 2, 277–280 (1984). · Zbl 0595.34015
[54] A. I. Bulgakov, ”Functional-differential inclusions with a nonconvex right-hand side,” in: Boundary Value Problems [in Russian], Perm (1985), pp. 65–69.
[55] A. I. Bulgakov and L. N. Lyapin, ”On the connectedness of sets of solutions of inclusions with a Volterra operator,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 146–149.
[56] A. I. Bulgakov and L. N. Lyapin, ”On the connectedness of sets of solutions of functional inclusions,” Mat. Sb.,119 (161), No. 2, 295–300 (1982). · Zbl 0511.47016
[57] A. I. Bulgakov and V. P. Maksimov, ”Functional and functional-differential inclusions with Volterra operators,” Differents. Uravn.,17, No. 8, 1362–1374 (1981).
[58] A. G. Butkovskii, ”A differential-geometric method for the constructive solution of controllability and finite control problems,” Avtomat. Telemekh., No. 1, 5–18 (1982).
[59] A. G. Butkovskii, ”The method of integral funnels of differential inclusions for investigating control systems,” Differents. Uravn.,21, No. 8, 1304–1313 (1985). · Zbl 0572.49017
[60] A. G. Butkovskii, ”Theory and method of the phase portrait of dynamical systems with control,” Avtomat. Telemekh., No. 12, 43–53 (1985).
[61] G. M. Vainikko, ”On the invariance of rotation of vector fields in the approximation of multivalued mappings,” Uch. Zap. Tart. Univ., No. 633, 3–10 (1983).
[62] A. B. Vasil’ev, ”On the continuous parameter dependence of solutions of differential inclusions,” Ukr. Mat. Zh.,35, No. 5, 607–611 (1983).
[63] E. B. Veliev, ”On conditions of existence theorems of certain integral inclusions,” Dagestan Univ., Makhachkala (1981). (Manuscript deposited at VINITI, Jan. 29, 1982, No. 421-82 Dep.)
[64] A. N. Vityuk, ”On the existence of solutions of the Goursat problem for hyperbolic partial differential inclusions,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Dec. 8, 1982, No. 5982-82 Dep.)
[65] A. N. Vityuk, ”On a class of partial differential equations with multivalued solutions,” Odessa Univ., Odessa (1983). (Manuscript deposited at UkrNIINTI, Apr. 18, 1985. No. 751 Uk-85 Dep.) · Zbl 0555.35089
[66] A. N. Vityuk, ”On the existence of solutions of a certain class of multivalued partial differential equations,” in: Boundary Value Problems [in Russian], Perm (1984), pp. 131–133.
[67] D. R. Gaidarov and R. H. Ragimkhanov, ”Multivalued integral mappings for single-valued vector-functions and some of their properties in the space of continuousn-dimensional vector functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 71–72 (1981). · Zbl 0489.45015
[68] D. R. Gaidarov and R. K. Ragimkhanov, ”Some properties of multivalued integral mappings in the space of continuousn-dimensional vector functions,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1982), pp. 39–50.
[69] D. R. Gaidarov and R. K. Ragimkhanov, ”On topological spaces of closed subsets and convergence relations in them,” Dagestan Univ., Makhachkala (1985). (Manuscript deposited at VINITI, Jan. 7, 1986, No. 135-B.)
[70] V. G. Gaitsgori, ”On the use of the averaging method for the construction of suboptimal solutions of singularly perturbed optimal control problems,” Avtomat. Telemekh., No. 9, 22–30 (1985).
[71] I. V. Gaishun, ”On a class of multivalued mappings of a metric space,” Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, No. 3, 14–18 (1984).
[72] B. D. Gel’man, ”On certain classes of sections of multivalued mappings,” in: Application of Topology to Modern Analysis [in Russian], Voronezh (1985), pp. 42–62.
[73] B. D. Gel’man and Yu. E. Gliklikh, ”The multivalued Ito integral,” in: Approximate Methods for the Investigation of Differential Equations and Their Applications [in Russian], Kuibyshev (1984), pp. 46–54.
[74] P. I. Ginailo, ”Necessary conditions for an extremum for differential inclusions in the optimal control problem with continuous time,” Kiev Univ., Kiev (1986). (Manuscript deposited at UkrNIINTI, Jan. 3, 1986, No. 140-Uk.) · Zbl 0900.93140
[75] V. I. Golov, ”Hubert space as a hyperspace of ordered arcs,” in: Functional Analysis and Its Applications in Mechanics and Probability Theory [in Russian], Moscow State Univ. (1984), pp. 13–18.
[76] L. N. Gurvits and A. M. Zakharin, ”Transformation of phase spaces of generalized semigroup systems,” Kibernet. Vychisl. Tekh., No. 58, 45–50 (1983).
[77] V. I. Gurman and G. N. Konstantinov, ”Reachability sets of control systems. The relation with Bellman’s equation,” Irkutsk Univ., Irkutsk (1981). (Manuscript deposited at VINITI, Aug. 14, 1981, No. 4038-81 Dep.)
[78] V. N. Gurov, ”Necessary conditions for the extremum of convex differential inclusions with phase constraints,” Mat. Zametki,38, No. 3, 407–416 (1985). · Zbl 0593.49012
[79] Kh. G. Guseinov (H. G. Guseinov) and A. I. Subbotin, ”Derivatives of multivalued mappings with applications to game-theoretical problems of control,” Problems Control Inform. Theory / Problemy Upravlen. Teor. Inform.,14, No. 3, 155–167 (1985).
[80] S. N. Dement’ev and L. P. Yanovskii, ”Some existence theorems for a fixed point of multivalued discontinuous monotone mappings in semiordered spaces,” in: Qualitative and Approximate Methods for the Study of Operator Equations [in Russian], Yaroslavl’ (1981), pp. 30–36.
[81] A. P. Dmitriev, ”Differential inclusions in Banach spaces,” in: Differential Equations [in Russian], Ryazan’ (1982), pp. 22–32.
[82] A. P. Dmitriev, ”Multivalued semicontinuous mappings of Banach spaces,” in: Differential Equations [in Russian], Ryazan’ (1982), pp. 32–47.
[83] A. P. Dmitriev, ”The application of differential inclusions to optimal control theory in the singular case,” in: Differential Equations: Stability Theory [in Russian], Ryazan’ (1984), pp. 50–58.
[84] A. P. Dmitriev, ”Regular inclusions in Banach spaces,” in: Differential Equations [in Russian], Ryazan. Gos. Ped. Inst., Ryazan’ (1984), pp. 56–65.
[85] Yu. I. Domshlak and G. I. Tamoev, ”A vector analogue of the Picone-Hartman-Wintner comparison theorem for operator-partial differential equations and its application to the investigation of ultrahyperbolic equations,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauki, No. 3, 21–26 (1981). · Zbl 0475.35010
[86] Yu. I. Domshlak and L. A. Sheikhzamanova, ”A comparison theorem for differential equations and inclusions with deviating argument in a Hilbert space and its application,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauki, No. 1, 23–28 (1980). · Zbl 0469.34052
[87] D. T. Dochev, ”Differential antagonistic games with delay and with a vector multivalued payoff function,” in: Mathematics and Mathematical Education (Sl’ ’nchev Bryag, 1983), Bulgar. Acad. Sci., Sofia (1983), pp. 46–55.
[88] D. T. Dochev, ”Slater saddle point in a game with multivalued vector payoff function,” God. Vissh. Uchebn. Zaved., Prilozh. Mat.,18, No. 4, 25–38 (1982). · Zbl 0561.90107
[89] A. N. Dranishnikov, ”Absolute extensors in dimensionn andn-soft mappings increasing the dimension,” Usp. Mat. Nauk,39, No. 5, 55–95 (1984).
[90] A. N. Dranishnikov, ”Multivalued absolute retracts and absolute extensors in dimensions 0 and 1,” Usp. Mat. Nauk,39, No. 5, 241–242 (1984). · Zbl 0586.54024
[91] S. Dubiel, ”The controllability of dynamical systems on the basis of the theory of differential inclusions,” in: Ninth Internat. Conf. on Nonlinear Oscillations (Kiev, Aug. 30-Sept. 6, 1981), Vol. 3, Kiev (1984), pp. 101–104.
[92] V. I. Zhukovskii and V. S. Molostvov, ”On the Pareto optimality in cooperative differential games with multivalued objective functionals,” in: Sb. Tr. VNII Sistem. Issled., No. 6, (1980), pp. 96–108.
[93] V. I. Zhukovskii and V. S. Molostvov, ”The state of equilibrium in games with multivalued vector payoff functions,” in: Sb. Tr. VNII Sistem. Issled., No. 4, (1981), pp. 47–66.
[94] A. Ya. Zaslavskii, ”On the existence of a linear selector of a superlinear multivalued mapping,” Mat. Zametki,29, No. 4, 557–566 (1981).
[95] A. Ya. Zaslavskii, ”Continuous transformations of metric compacta with finite turnpike sets,” Usp. Mat. Nauk,38, No. 5, 185–186 (1983). · Zbl 0574.90011
[96] A. Ya. Zaslavskii, ”On measures that are invariant with respect to transformations of metric compacta,” Sib. Mat. Zh.,25, No. 2, 121–131 (1984). · Zbl 0554.28015
[97] A. Ya. Zaslavskii, ”On a class of multivalued mappings,” Sib. Mat. Zh.,26, No. 2, 98–101 (1985). · Zbl 0587.54031
[98] Yu. B. Zelinskii, ”On the differentiation of multivalued functions,” in: Theory of Functions and Topology, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1983), pp. 33–42.
[99] A. V. Ivanov, ”On an estimate of the modulus of continuity of the generalized solutions of certain singular parabolic equations,” J. Sov. Math.,37, No. 1 (1987). · Zbl 0614.35051
[100] R. Ivanov, P. Henderov, S. Nedev, and G. Skordev, ”Multivalued mappings and some of their applications,” in: Mathematics and Mathematical Education (Sl”nchev Bryag, 1982), Sofia (1982), pp. 37–62.
[101] A. E. Irisov, ”The approximation of periodic solutions of a differential inclusion,” in: Problems of the Modern Theory of Periodic Motions, No. 4 [in Russian], Udmurt. Gos. Univ., Izhevsk. Mekh. Inst., Izhevsk (1980), pp. 13–16. · Zbl 0451.49021
[102] A. E. Irisov, ”On the question of the approximation of the periodic solutions of a differential inclusion,” Differents. i Integral. Uravn. (Gorkii), No. 6, 155 (1982).
[103] A. E. Irisov, ”The continuous dependence of the periodic solutions of a differential inclusion on the right-hand side,” Differents. Uravn.,20, No. 6, 1086–1088 (1984). · Zbl 0549.34042
[104] A. E. Irisov and E. L. Tonkov, ”On the closure of the set of periodic solutions of a differential inclusions,” in: Differential and Integral Equations [in Russian], Gorki (1983), pp. 32–38.
[105] I. Israilov and S. Otakulov, ”On a class of differential inclusions,” Dokl. Akad. Nauk UzSSR, No. 12, 11–12 (1980). · Zbl 0509.34012
[106] I. Israilov and S. Otakulov, ”Properties of solutions of differential inclusions and their applications to optimal control problems,” in: Studies in Ordinary Differential Equations [in Russian], Samarkand (1982), pp. 98–105.
[107] A. A. Kalmykov, ”Theorems of monotone selection,” Perm. Univ., Perm (1982). (Manuscript deposited at VINITI, Jan. 3, 1983, No. 15-83 Dep.)
[108] M. R. Karibov, ”Monotone multivalued mappings,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 138–142.
[109] M. R. Karibov, ”The continuous dependence of the solutions of inclusions on the righthand sides,” Perm Polytechnic Inst., Perm (1981). (Manuscript deposited at VINITI, April 13, 1981, No. 1649-81 Dep.)
[110] M. R. Karibov, ”The existence of solutions of inclusions and their dependence on parameters,” Kalm. Univ, Elista (1984). (Manuscript deposited at VINITI, Aug. 23, 1984, No. 5980-84 Dep.)
[111] N. I. Karulina, ”Sufficient optimality conditions for differential inclusions,” in: Some Problems of Contemporary Mathematics and Their Application to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 78–81.
[112] S. S. Klimchuk, ”On relative estimates in the averaging method for differential inclusions,” Odessa Univ., Odessa (1985). (Manuscript deposited at UkrNIINTI, Sep. 2, 1985, No. 2020-Uk.))
[113] Sh. M. Kozhaev, ”On periodic solutions of differential equations with a multivalued right-hand side,” in: Mat. Fiz., Leningrad (1984), pp. 135–139.
[114] O. N. Kolesnikov, ”Sections of multivalued mappings,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 2, 21–24 (1984). · Zbl 0538.54010
[115] O. N. Kolesnikov, ”Sections of the first class of multivalued mappings,” Moscow State Univ., Moscow (1984). (Manuscript deposited at VINITI, Aug. 6, 1984, No. 5690-85 Dep.) · Zbl 0551.54012
[116] O. N. Kolesnikov, ”Continuous single-valued and semicontinuous compact-valued sections of multivalued mappings,” Moscow State Univ., Moscow (1984). (Manuscript deposited at VINITI, Aug. 6, 1984, No. 5689-84 Dep.)
[117] O. N. Kolesnikov, ”Sections of multivalued mappings with values semistratifiable and ordered spaces,” Dokl. Akad. Nauk SSSR,277, No. 1, 33–37 (1984). · Zbl 0611.54012
[118] O. N. Kolesnikov, ”Sections of multivalued mappings on everywhere dense subsets,” Usp. Mat. Nauk,39, No. 4, 161–162 (1984). · Zbl 0551.54012
[119] O. N. Kolesnikov, ”Continuous sections of multivalued mappings,” in: Cardinality Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 31–35.
[120] O. N. Kolesnikov, ”Sections in multivalued mappings with values in scattered spaces,” Sib. Mat. Zh.,27, No. 1, 70–78 (1986). · Zbl 0625.54022
[121] A. B. Kolosov, ”The differentiability of multivalued functions,” in: Mathematical Questions in Optimization and Control Problems [in Russian], Moscow (1981), pp. 48–54.
[122] V. A. Komarov, ”Estimates of reachability sets for linear systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 865–879 (1984).
[123] V. A. Komarov, ”Estimates of the attainability set of differential inclusions,” Mat. Zametki,32, No. 6, 916–925 (1985).
[124] V. A. Komarov, ”On the high-speed time for differential inclusions,” in: Contemporary Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 56–59.
[125] A. Ya. Kopanskii, ”Conditions for the representation of semidiagonal systems on the line by means of differential equations,” Mat. Issled., No. 77, 104–110 (1984).
[126] A. Ya. Hopanskii, ”The representation of dispersive dynamical and semidynamical systems on a straight line by means of F-solutions of differential inclusions,” Mat. Issled., No. 80, 95–107 (1985).
[127] A. Ya. Kopanskii, ”The representation of dispersed dynamic and semidynamic systems on a straight line by means of differential inclusions,” Izv. Akad. Nauk Moldav. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 3–6 (1985).
[128] A. Ya. Kopanskii, ”The representation of dispersive dynamical systems on the line by differential inclusions within the accuracy of a weak isomorphism,” Mat. Issled., No. 88, 60–71 (1986).
[129] A. Ya. Kopanskii and K. S. Sibirskii, ”Conditions for the representation of dynamic systems on the line by means of differential equations,” Mat. Issled., No. 67, 61–68 (1982).
[130] V. B. Kostousov, ”The structure of impulse-sliding modes under perturbations of measure type. II,” Differents. Uravn.,20, No. 5, 745–753 (1984).
[131] T. N. Kravets, ”On the solutions of stochastic differential inclusions in finite-dimensional spaces. Donets. Univ., Donetsk (1985). (Manuscript deposited at UkrNIINTI, Aug. 14, 1985. No. 1829-Uk.)
[132] T. N. Kravets, ”On the solutions of stochastic differential inclusions in Banach spaces,” Donets. Univ., Donetsk (1985). (Manuscript deposited at UkrNIINTI, Sep. 20, 1985. No. 2263 Uk.)
[133] T. N. Kravets, ”On the approximation of the solutions of stochastic differential inclusions,” in: Theory of Random Processes, No. 14 [in Russian], Naukova Dumka, Kiev (1986), pp. 43–48. · Zbl 0675.60049
[134] A. N. Krasovskii, ”On the formalization of a positional differential game,” Dokl. Akad. Nauk SSSR,257, No. 4, 812–817 (1981).
[135] A. Ya. Kruger, ”A theorem on coverings for multivalued mappings,” Redkollegiya Izv. Akad. Nauk BSSR, Ser. Mat. Fiz. Nauk, Minsk (1985). (Manuscript deposited at VINITI, June 26, 1985, No. 4613-85 Dep.)
[136] L. V. Kuznetsov and V. A. Egorov, ”Necessary conditions for the optimality of the phase trajectory at the points where its smoothness is violated,” Preprint No. 116, Inst. Prikl. Mat. Akad. Nauk SSSR (1982).
[137] R. M. Kuliev, ”A discrete formalization of the successive selections of a multivalues mapping,” Inst. Kibernet., Akad. Nauk AzSSR, Baku (1986). (Manuscript deposited at VINITI, Apr. 30, 1986, No. 3178-B.)
[138] R. M. Kuliev and A. G. Chentsov, ”On the successive selections of a multivalued mapping,” Inst. Mat. Mekh., Ural. Nauch. Tsentra, Akad. Nauk SSSR, Sverdlovsk (1983). (Manuscript deposited at VINITI, July 8, 1983, No. 3780-83 Dep.)
[139] L. A. Kun, ”On the time-optimality problem for differential inclusions,” Differents. Uravn.,19, No. 5, 892–898 (1983).
[140] V. M. Kuntsevich and M. M. Lychak, ”Some questions concerning the theory of evolution of sets (asymptotic estimates of the motion of systems described by difference inclusions),” in: Ninth International Conference on Nonlinear Oscillations (Kiev, 1981), Vol. 2, Naukova Dumka, Kiev (1984), pp. 202–206.
[141] A. B. Kurzhanskii, ”On the analytic description of a set of surviving trajectories of a differential system,” Usp. Mat. Nauk,40, No. 4, 183–184 (1984).
[142] A. B. Kurzhanskii, ”On an analytic description of the pencil of viable trajectories of a differential system,” Dokl. Akad. Nauk SSSR,287, No. 5, 1047–1050 (1986).
[143] A. B. Kurzhanskii and T. F. Filippova, ”Description of a set of viable trajectories of a differential inclusion,” Dokl. Akad. Nauk SSSR,289, No. 1, 38–41 (1986).
[144] A. G. Kusraev, ”On a general method of subdifferentiation,” Dokl. Akad. Nauk SSR,257, No. 4, 822–826 (1981). · Zbl 0474.46002
[145] A. G. Kusraev, ”On the openness of convex measurable correspondences,” Mat. Zametki,33, No. 1, 41–48 (1983). · Zbl 0511.46005
[146] G. A. Laricheva, ”Dynamical systems generated by quasihomogeneous multivalued mappings,” Optimizatsiya (Novosibirsk), No. 33 (50), 111–123 (1983). · Zbl 0571.58002
[147] G. A. Laricheva, ”Dynamical systems generated by quasihomogeneous multivalued mappings,” Dokl. Akad. Nauk SSSR,276, No. 1, 31–34 (1984). · Zbl 0609.54030
[148] A. A. Levakov, ”Some properties of solutions of differential inclusions in a Banach space,” Vestn. Beloruss. Gos. Univ. Ser. I, No. 2, 54–56 (1981). · Zbl 0514.34009
[149] A. A. Levakov, ”Some properties of multivalued mappings and an existence theorem for solutions of differential inclusions,” Vestn. Beloruss. Univ. Ser. I, No. 1, 45–48 (1982). · Zbl 0541.34006
[150] O. V. Levchuk, ”On linear selectors of the subdifferential mapping of locally Lipschitz functions,” Optimizatsiya (Novosibirsk), No. 32 (49), 34–45 (1983). · Zbl 0549.46026
[151] Yu. S. Ledyaev, ”Theorems on an implicitly defined multivalued mapping,” Dokl. Akad. Nauk SSSR,216, No. 3, 543–546 (1984). · Zbl 0589.90074
[152] K. B. Liberman and A. M. Potapov, ”The integration of systems of ordinary differential equations under incomplete information on its parameters,” in: Boundary Value Problems [in Russian], Perm (1982), pp. 66–71.
[153] R. S. Linichuk, ”On certain multivalued mappings,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 15–18 (1981). · Zbl 0477.54004
[154] R. S. Linichuk, ”On the hyperextensions of multivalued mappings and a spectral representation of some hyperspaces,” Ukr. Mat. Zh.,33, No. 2, 248–252 (1981). · Zbl 0477.54004
[155] Yu. E. Linke, ”Sublinear operators, continuous semilinear selectors, and the Steiner point,” in: Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 182–202. · Zbl 0588.46028
[156] I. M. Lupikov, ”Necessary and sufficient conditions for the strong differentiability of a multivalued mapping with polyhedral images,” Redkollegiya Vestn. Leningr. Gos. Univ., Mat. Mekh. Astron., Leningrad (1984). (Manuscript deposited at VINITI, June 21, 1984, No. 4197-84 Dep.)
[157] I. M. Lupikov, ”On the condition of differentiability for a multivalued mapping with polyhedral images,” Vestn. Leningr. Univ., No. 15, Vyp. 3, 95–98 (1985).
[158] L. N. Lyapin, ”The complete continuity of the multivalued Hammerstein operator,” in: Nonlinear Oscillations and Game Theory, No. 3 [in Russian], Udmurt. Gos. Univ., Izhevsk (1981), pp. 78–87.
[159] L. N. Lyapin, ”On Uryson’s equation with a discontinuous operator,” Differents. Uravn.,22, No. 3, 509–518 (1986).
[160] T. Kh. Makazhanova, ”On the spectral properties of a certain class of superlinear mappings,” in: Modern Problems in Function Theory and Functional Analysis [in Russian], Karaganda (1984), pp. 84–92.
[161] T. Kh. Makazhanova, ”On the topological properties of a multivalued mapping and the family of its envelopes,” Redkollegiya Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., Alma-Ata (1986). (Manuscript deposited at VINITI, Feb. 21, 1986, No. 1238-B Dep.)
[162] M. I. Martynova, ”A criterion for the existence of a periodic solution of a certain class of inclusions,” Magnitogor. Gorno-Metallurg. Inst., Magnitogorsk (1986). (Manuscript deposited at VINITI, June 20, 1986, No. 4555-B Dep.)
[163] T. V. Matushkina, ”On the theory of measurable selections,” in: Boundary Value Problems, Perm (1980), pp. 190–191.
[164] E. N. Makhmudov, ”Some operations over multivalued mappings, and locally conjugate mappings connected with them,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,6, No. 6, 94–99 (1985). · Zbl 0605.90135
[165] E. N. Makhmudov, ”Optimization problems with constraints prescribed by multivalued mappings and some of their applications,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,6, No. 5, 114–117 (1985). · Zbl 0593.49019
[166] V. S. Mel’nik, ”On an optimal control problem for equations with multivalued operators,” in: Adaptive Systems of Control [in Russian], Kiev (1984), pp. 23–27.
[167] L. I. Minchenko, ”Conditions for directional differentiability of the maximum function on a point-set mapping,” Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 3, 108–109 (1984). · Zbl 0567.49009
[168] L. I. Minchenko and O. F. Borisenko, ”Local sections and the maximum principle for difference inclusions,” Differents. Uravn.,20, No. 3, 539–541 (1984).
[169] L. G. Mityushin, ”On nonunivalent mappings of the demand,” in: Some Aspects in the Modelling of [in Russian], Moscow (1981), pp. 96–105.
[170] B. Sh. Mordukhovich, ”Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings,” Dokl. Akad. Nauk BSSR,28, No. 12, 976–979 (1984). · Zbl 0557.49007
[171] B. Sh. Mordukhovich, ”On necessary conditions for an extremum in nonsmooth optimization,” Dokl. Akad. Nauk SSSR,283, No. 4, 816–822 (1985). · Zbl 0586.49011
[172] M. A. Mukhsinov, ”On the solutions of differential inclusions in a Banach space,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 6, 339–342 (1981). · Zbl 0514.34051
[173] M. A. Mukhsinov, ”On a certain differential game of quality,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 7, 410–412 (1981). · Zbl 0495.90095
[174] M. A. Mukhsinov, ”Differential inclusions and generalized dynamical systems,” Dokl. Akad. Nauk Tadzhik. SSR,24, No. 8, 474–477 (1981). · Zbl 0491.34042
[175] M. A. Mukhsinov, ”On conditions for the invariance of a convex set for a differential inclusion,” Dokl. Akad. Nauk UzSSR, No. 9, 5–7 (1982). · Zbl 0637.34008
[176] M. A. Mukhsinov, ”On a certain class of differential inclusions,” Dokl. Akad. Nauk Tadzhik. SSR,26, No. 6, 338–340 (1983). · Zbl 0573.34015
[177] M. A. Mukhsinov, ”On the existence of solutions of differential inclusions in the presence of phase constraints,” Dokl. Akad. Nauk UzSSR, No. 2, 5–7 (1984). · Zbl 0539.34013
[178] Nguen Khyu Vet (Nguyen Huy Viet), ”On the random fixed point theorem for a random multivalued mapping,” Mat. Zametki,38, No. 2, 257–264 (1985).
[179] Nguen Khyu V’et (Nguyen Huy Viet), ”Fixed points of multivalued mappings in submetrizable topological spaces,” Vestn. Moskov. Univ. Ser. I Mat. Mekh., No. 4, 69–70 (1986).
[180] E. I. Nenakhov and M. E. Primak, ”On a certain refinement of fixed point theorems,” in: Mathematical Methods for the Investigation of Optimization Problems [in Russian], Kiev (1983), pp. 31–41. · Zbl 0561.90021
[181] G. M. Nepomnyashchii, ”On multivalued continuous selections,” Usp. Mat. Nauk,39, No. 3, 241–242 (1984).
[182] G. M. Nepomnyashchii, ”On the structure of multivalued absolute retracts of uncountable weight,” Trudy Mosk. Mat. Obshch.,47, 146–157 (1984).
[183] G. M. Nepomnyashchii, ”Continuous multivalued selections of lower semicontinuous mappings,” Sib. Mat. Zh.,26, No. 4, 111–119 (1985).
[184] M. S. Nikol’skii, ”A remark on Filippov’s lemma,” Vestn. Mosk. Univ., Ser. XV Vychisl. Mat. Kibernet., No. 2, 76–78 (1982). · Zbl 0493.49015
[185] Z. G. Nishnianidze, ”Fixed points of monotone multivalued operators,” Soobsh. Akad. Nauk Gruzin. SSR,114, No. 3, 489–491 (1984). · Zbl 0578.47043
[186] S. P. Novikov, ”Multivalued functions and functionals. An analogue of the Morse theory,” Dokl. Akad. Nauk SSSR,260, No. 1, 31–35 (1981). · Zbl 0505.58011
[187] S. P. Novikov, ”Variational methods and periodic solutions of equations of Kirchhoff type. II,” Funkts. Anal. Prilozhen.,15, No. 4, 37–52 (1981).
[188] S. P. Novikov, ”Kirchhoff type equations and multivalued functions and functionals. The analogue of the Morse-Lyusternik-Shnirel’man theory and periodic orbits in a magnetic field,” Usp. Mat. Nauk,36, No. 5, 217–219 (1981).
[189] S. P. Novikov, ”Critical points and level surfaces of multivalued functions,” Trudi Mat. Inst. Akad. Nauk SSSR,166, 201–209 (1984). · Zbl 0553.58005
[190] S. P. Novikov, ”The analytic generalized Hopf invariant. Multivalued functionals,” Usp. Mat. Nauk,39, No. 5, 97–106 (1984).
[191] V. I. Norkin, ”On random Lipschitz functions,” Kibernetika, No. 2, 66–71, 76 (1986).
[192] E. A. Nurminskii, ”Global properties of{\(\epsilon\)}-subgradient mappings,” Kibernetika, No. 1, 120–122 (1986). · Zbl 0612.90092
[193] V. V. Obukhovskil, ”On the rotation of noncompact almost acyclical multivalued vector fields,” in: Equations on Manifolds, Voronezh State Univ. (1982), pp. 118–123.
[194] V. V. Obukhovskii, ”On the existence of several fixed points of multivalued mappings,” in: Eighth School on the Theory of Operators and Functional Spaces, II, Riga (1983), pp. 35–36.
[195] V. V. Obukhovskii, ”On the topological degree for a class of noncompact multivalued mappings,” Funkts. Anal. (Ul’yanovsk), No. 23, 82–93 (1984).
[196] V. V. Obukhovskii, ”On a certain generalization of the M. A. Krasnosel’skii-A. I. Perov connectedness principle,” in: Fifth Tiraspol Symposium on General Topology and Its Applications [in Russian], Shtiintsa, Kishinev (1985), pp. 186–187.
[197] V. V. Obukhovskii and A. G. Skaletskii, ”Some theorems on the continuation and quasi-continuation of continuous mappings,” Sib. Mat. Zh.,23, No. 4, 137–141 (1982).
[198] V. V. Obukhovskii and A. I. Furmenko, ”On the topological structure of the set of solutions of certain operator inclusions,” Voronezh. Lesotekhn. Inst., Voronezh (1986). (Manuscript deposited at VINITI, June 16, 1986, No. 3565 B.)
[199] Zh. S. Oganesyan, ”On limit sets of multivalued mappings,” Dokl. Akad. Nauk SSSR,275, No. 6, 1313–1316 (1984).
[200] Zh. S. Oganesyan, ”Tangential limit sets of multivalued mappings,” in: Selected Problems in Complex Analysis [in Russian], Moscow (1986), pp. 68–95. (Manuscript deposited at VINITI, Jan. 24, 1986, No. 576-B86.)
[201] V. I. Opoitsev, Nonlinear Systemostatics [in Russian], Nauka, Moscow (1986).
[202] V. V. Ostapenko, ”The method of H-convex sets in differential games,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 62–64 (1984). · Zbl 0554.90106
[203] S. Otakulov, ”On a certain differential inclusion with a small lag,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1981), pp. 35–42.
[204] S. Otakulov, ”On differential inclusions with small lag,” Differents. Uravn.,19, No. 6, 971–976 (1983).
[205] S. Otakulov, ”On the continuous dependence of the solutions of a certain class of differential inclusions on a parameter,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1983), pp. 74–78.
[206] S. Otakulov, ”On the questioh of the dependence of the solutions of differential inclusions on a parameter,” in: Questions of Mathematical Analysis and Its Applications [in Russian], Samarkand (1984), pp. 37–43.
[207] S. Otakulov and M. A. Yagubov, ”On certain properties of differential inclusions and their applications to optimal control,” Dokl. Akad. Nauk AzSSR,37, No. 4, 11–15 (1981). · Zbl 0466.49012
[208] S. Otakulov and M. A. Yagubov, ”Properties of the solutions of differential inclusions and their applications in optimal control,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 5, 137–143 (1982). · Zbl 0522.49025
[209] E. V. Oshman, ”On the continuity of the metric projection to convex closed sets,” Dokl. Akad. Nauk SSSR,269, No. 2, 289–291 (1983). · Zbl 0531.41029
[210] E. V. Oshman, ”On the continuity of the metric projection,” Mat. Zametki,37, No. 2, 200–211 (1985). · Zbl 0586.41026
[211] O. I. Pak, ”On properties of the subdifferentials of a convex-concave function,” Kibernetika, No. 3, 127–129 (1982). · Zbl 0599.26025
[212] A. I. Panasyuk, ”The equations of the reachability domains and their application in optimal control problems,” Avtomat. Telemekh., No. 5, 67–78 (1982).
[213] A. I. Panasyuk ”A differential equation of nonconvex attainability sets,” Mat. Zametki,37, No. 5, 717–726 (1985). · Zbl 0577.49027
[214] A. I. Panasyuk, ”On quasidifferential equations in a metric space,” Differents. Uravn.,21, No. 8, 1344–1353 (1985).
[215] V. P. Panteleev, ”On the theory of multivalued measurable mappings,” in: Ordered Spaces and Operator Equations [in Russian], Perm (1982), pp. 104–111.
[216] B. V. Pakhaev, ”The uniform boundedness of the family of weakly regular nonadditive mappings,” Mat. Zametki,34, No. 1, 47–53 (1983).
[217] B. V. Pakhaev, ”On certain questions of multivalued integration,” in: Problems of Functional Analysis. Measure and Integral [in Russian], Kuibyshev (1984), pp. 120–130.
[218] B. V. Pakhaev, ”The principle of uniform boundedness for a family of multivalued mappings and its application to measure theory,” Gorno-Alt. Gos. Ped. Inst., Gorno-Altaisk (1985). (Manuscript deposited at VINITI, Dec. 16, 1985, No. 8649-B.)
[219] V. R. Petukhov, ”The group analysis of multivalued dynamical systems,” Preprint No. 49, Inst. of Theoretical and Experimental Physics, Moscow (1985).
[220] V. R. Petukhov, ”The structure of invariant dynamical subsystems,” Preprint No. 92, Inst. of Theoretical and Experimental Physics, Moscow (1985).
[221] N. A. Pecherskaya, ”Differentiability of multivalued mappings,” Vestn. Leningr. Univ. Mat. Mekh. Astron., No. 7, 115–117 (1981).
[222] P. V. Pliss, ”On the continuous dependence of the controllability set on a parameter,” Vestn. Leningr. Univ., No. 19, Vyp. 4, 31–36 (1980). · Zbl 0455.93010
[223] A. V. Plotnikov, ”Differential inclusions with Kukuhara’s derivative and certain control problems,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Apr. 26, 1982, No. 2036-82 Dep.)
[224] A. V. Plotnikov, ”Theorems of existence and the continuous dependence on the parameter of the solutions of differential inclusions with Kukuhara’s derivative,” Odessa Univ., Odessa (1982). (Manuscript deposited at VINITI, Apr. 13, 1983, No. 1949-83 Dep.)
[225] A. V. Plotnikov, ”Differential inclusions with the Kukuhara derivative and problems of control of multivalued trajectories,” in: Proceedings of the 21st All-Union Scientific Student Conference: Student and Scientific-Technical Progress (Novosibirsk, 1983), Math., Novosibirsk State Univ., Novosibirsk (1983), pp. 49–54.
[226] V. A. Plotnikov, ”The averaging of differential inclusions,” in: Ninth International Conference on Nonlinear Oscillations, Kiev, 1981, Vol. I [in Russian], Kiev (1984), pp. 306–308.
[227] V. A. Plotnikov and A. B. Vasil’ev, ”The averaging method for differential inclusions with a measurable right-hand side,” Odessa Univ., Odessa (1981) (Manuscript deposited at VINITI, July 8, 1981, No. 3338-81 Dep.)
[228] V. A. Plotnikov and A. B. Vasil’ev, ”The averaging of the equations of controlled motion with slow and fast variables,” Odessa Univ., Odessa (1981) (Manuscript deposited at VINITI, Jan. 5, 1982, No. 65-82 Dep.)
[229] V. A. Plotnikov and V. P. Zheltlkov, ”Averaging in differential inclusions with lag,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 42–45 (1983).
[230] V. I. Plotnikov and I. M. Starobinets, ”On operator inclusions in smooth extremum problems,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 42–48 (1985). · Zbl 0593.49018
[231] V. I. Plotnikov and I. M. Starobinets, ”Phase inclusions in optimal control problems,” Differents. Uravn.,22, No. 2, 236–247 (1986). · Zbl 0599.49015
[232] A. I. Povolotskii and T. A. Sventsitskaya, ”On the spectra of multivalued Hammerstein operators that are close to linear ones,” in: Functional Analysis, No. 20 [in Russian], Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk (1983), pp. 115–124. · Zbl 0578.45019
[233] A. I. Povoletskii and T. A. Sventsitskaya, ”On the disposition of the continuous branches of the eigenvectors of a multivalued Hammerstein operator that is nearly linear,” in: Operators and Their Applications. Approximation of Functions. Equations [in Russian], Leningrad (1985), pp. 61–66.
[234] E. S. Polovinkin, ”A generalization of A. F. Filippov’s theorem and applications in control theory,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1982), pp. 117–118.
[235] E. S. Polovinkin, Elements of the Theory of Multivalued Mappings [in Russian], Izd. MFTI, Moscow (1982).
[236] E. S. Polovinkin, The Theory of Multivalued Mappings [in Russian], Izd. MFTI, Moscow (1983). · Zbl 0593.28009
[237] E. S. Polovinkin, ”On the integration of multivalued mappings,” Dokl. Akad. Nauk SSSR,271, No. 5, 1069–1074 (1983).
[238] E. S. Polovinkin, ”On the question of the differentiation of multivalued mappings,” in: Some Questions of Modern Mathematics and Their Applications to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 90–97.
[239] E. S. Polovinkin, ”On necessary optimality conditions for the solutions of differential inclusions on a segment,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 87–94.
[240] E. S. Polovinkin and G. V. Smirnov, ”Extremal problems for differential inclusions,” in: Some Questions of Modern Mathematics and Their Applications to Problems of Mathematical Physics [in Russian], Moscow (1985), pp. 98–105.
[241] E. S. Polovinkin and G. V. Smirnov, ”Continuous mappings in the set of the solutions of differential inclusions,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 95–102.
[242] E. S. Polovinkin and G. V. Smirnov, ”Differentiation of multivalued mappings and properties of the solutions of differential inclusions,” Dokl. Akad. Nauk SSSR,288, No. 2, 296–301 (1986). · Zbl 0659.34013
[243] E. S. Polovinkin and G. V. Smirnov, ”On a certain approach to the differentiation of multivalued mappings and necessary conditions for the optimality of the solutions of differential inclusions,” Differents. Uravn.,22, No. 6, 944–954 (1986).
[244] B. N. Pshenichnyi and L. I. Ginailo, ”Necessary extremum conditions for discrete inclusions,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 70–71 (1985).
[245] B. N. Pshenichnyi and V. N. Gurov, ”On necessary conditions for the extremum on convex differential inclusions with phase constraints,” Ukr. Mat. Zh.,33, No. 1, 105–109 (1981). · Zbl 0479.49011
[246] B. N. Pshenichnyi and V. S. Kirilyuk, ”On the differentiability of a minimum function with connected constraints,” Kibernetika, No. 1, 123–125 (1985). · Zbl 0591.90075
[247] R. K. Ragimkhanov, ”On the question of the existence of the upper and the lower solutions of the Hammerstein integral inclusion,” Differents. Uravn.,19, No. 11, 2011–2013 (1983). · Zbl 0529.45005
[248] R. K. Ragimkhanov and E. B. Veliev, ”On the semicontinuity and continuity of multivalued mappings,” in: Functional Analysis, Theory of Functions and Their Applications [in Russian], Makhachkala (1985), pp. 113–119.
[249] M. S. Radzhef, ”The investigation of a certain problem of optimal control ofm objects with multivalued trajectories. Odessa Univ., Odessa (1983). (Manuscript deposited at UkrNIINTI, Jan 30, 1984, No. 137Uk -D84).
[250] M. S. Radzhef, ”On a certain high-speed problem with multivalued trajectories,” Odessa Univ., Odess (1983). (Manuscript deposited at UkrNIINTI, Aug. 7, 1984, No. 1397 Uk-84 Dep.)
[251] M. S. Radzhef, ”On the Nash equilibrium point for a differential game ofN persons with multivalued trajectories,” Odessa Univ., Odessa (1985). (Manuscript deposited at UkrNIINTI, May 8, 1985, No. 960Uk-85Dep).
[252] N. V. Roenko, ”The maximization of a probability function of a convex multivalued mapping,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1982), pp. 17–22.
[253] N. V. Roenko, ”The maximization problem of a certain class of integral functionals of multivalued mappings,” Inst. Kibernet., Akad. Nauk Ukr. SSR, Preprint No. 37 (1983).
[254] A. V. Rudenko and V. N. Semenov, ”Smooth branches of multivalued mappings in a prpblem of local controllability,” Kibern. Vychisl. Tekh., No. 62, 21–28 (1984).
[255] A. V. Rudenko and I. V. Chernenko, ”On certain properties of smooth sections of a multivalued reachability mapping,” in: Complex Control Systems [in Russian], Akad. Nauk Ukr. SSR, Inst. Kibernet., Kiev (1982), pp. 68–77.
[256] P. Rupsys, ”B-measurable and continuous multivalued mappings,” Litov. Mat. Sb. (Liet. Mat. Rinkinys),26, No. 4, 738–745 (1986).
[257] M. A. Sadygov, ”Necessary and sufficient optimality conditions for differential inclusions,” Inst. Mat. Mekh., Akad. Nauk AzSSR, Baku (1982). (Manuscript deposited at VINITI, July 15, 1982, No. 3786-82 Dep.) · Zbl 0542.49020
[258] M. A. Sadygov, ”On certain necessary and sufficient conditions for the minimum for differential inclusions,” Dokl. Akad. Nauk AzSSR,40, No. 2, 6–9 (1984). · Zbl 0542.49020
[259] T. A. Sventsitskaya, ”Multivalued Volterra integral equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 25–29 (1982). · Zbl 0504.45005
[260] T. A. Sventsitskaya, ”On integral inclusions of the Volterra type with a retarded argument,” in: Materials of the Fifth Conference of Young Scientists of the Friendship of Nations University (Moscow, 1982), Part 1 [in Russian], Moscow (1982), pp. 139–141. (Manuscript deposited at VINITI, July 15, 1982, No. 3814-82 Dep.)
[261] T. A. Sventsitskaya, ”Majorants of integral inclusions,” in: Operators and Their Applications [in Russian], Leningrad (1983), pp. 83–91. · Zbl 0543.45005
[262] K. S. Sibirskii, ”Semidynamical systems,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 663–672.
[263] K. S. Sibirskii and A. S. Shube, ”Dispersive semidynamic systems on the line,” Mat. Issled., No. 67, 134–148 (1982).
[264] K. S. Sibirskii and A. S. Shube, ”The axiomatics of semidynamical systems,” Mat. Issled., No. 77, 130–136 (1984).
[265] D. B. Silin, ”Subdifferentials of convex functions and integrals of multivalued mappings,” Vestn. Moskov. Univ., Ser. XV Vychisl. Mat. Kibernet., No. 1, 55–59 (1984). · Zbl 0553.28010
[266] D. B. Silin, ”The Riemann integrability of optimal control in linear time-optimality problems,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 854–864 (1984).
[267] A. G. Skaletskii, ”Uniformly continuous selections in a Banach space,” in: Cardinality Invariants and Mappings of Topological Spaces [in Russian], Izhevsk (1984), pp. 44–47.
[268] A. G. Skaletskii, ”Uniformly continuous selections in Frechet spaces,” Vestn. Moskov. Univ., Ser. I Mat. Mekh., No. 2, 24–28 (1985).
[269] G. V. Smirnov, ”On the differentiability of the solutions of differential inclusions with respect to the initial data,” in: Mathematical Methods in Control and Data Processing [in Russian], Moscow (1984), pp. 116–119.
[270] G. V. Smirnov, ”On local controllability for differential inclusions,” in: Modern Mathematics in Physicotechnical Problems [in Russian], Moscow (1986), pp. 103–106.
[271] I. M. Starobinets, ”Necessary conditions for an extremum in optimal control problems with mixed constraints,” Preprint No. 121, Inst. Prikl. Fiz. Akad. Nauk SSSR (1985).
[272] S. I. Suslov, ”The realization of multivalued functions by linear controlled systems,” Upravlyaemye Sistemy (Novosibirsk), No. 21, 62–69 (1981). · Zbl 0515.49023
[273] S. I. Suslov, ”On the closedness of a bundle of trajectories in Banach space,” Upravlyaemye Sistemy, No. 22, 66–69 (1982). · Zbl 0519.28005
[274] S. I. Suslov, ”Martingales of multivalued functions and the Radon-Nikodym theorem for multivalued measures,” Inst. Mat., Sib. Otd. Akad. Nauk SSSR. Preprint No. 16 (1982).
[275] V. I. Susoikin, ”On the complete controllability of nonlinear systems with a constraint on the control,” in: Differential Equations: Qualitative Theory [in Russian], Ryazan. Gos. Ped. Inst., Ryazan (1981), pp. 121–128.
[276] V. I. Susoikin, ”On the existence of a fixed point of a multivalued mapping,” in: Differential Equations: Qualitative Theory [in Russian], Ryazan. Gos. Pedagog. Inst., Ryazan (1981), pp. 129–132.
[277] A. A. Tolstonogov, ”On comparison theorems for differential inclusions in a locally convex space. I. Existence of solutions,” Differents. Uravn.,17, No. 4, 651–659 (1981).
[278] A. A. Tolstonogov, ”On comparison theorems for differential inclusions in a locally convex space. II. Properties of solutions,” Differents. Uravn.,17, No. 6, 1016–1024 (1981).
[279] A. A. Tolstonogov, ”Differential inclusions in a Banach space with nonconvex right-hand side. Existence of solutions,” Sib. Mat. Zh.,22, No. 4, 182–198 (1981). · Zbl 0529.34058
[280] A. A. Tolstonogov, ”On the structure of the set of solutions of differential inclusions with a nonconvex right-hand side,” Usp. Mat. Nauk,36, No. 4, 226–227 (1981).
[281] A. A. Tolstonogov, ”On comparison theorems for differential inclusions in a Banach space with a nonconvex right-hand side. II. Global solutions,” in: The Direct Method in the Theory of Stability and Its Applications [in Russian], Nauka, Novosibirsk (1981), pp. 18–34.
[282] A. A. Tolstonogov, ”On the density and ’being boundary’ for the solution set of a differential inclusion in a Banach space,” Dokl. Akad. Nauk SSSR,261, No. 2, 293–296 (1981).
[283] A. A. Tolstonogov, ”On the structure of the set of solutions of differential inclusions in a Banach space,” Mat. Sb.,118 (160), No. 1, 3–18 (1982). · Zbl 0514.34053
[284] A. A. Tolstonogov, ”On a certain dependence on a parameter of the solution of a differential inclusion with nonconvex right-hand side,” Differents. Uravn.,18, No. 9, 1559–1570 (1982).
[285] A. A. Tolstonogov, ”On an equation of an integral funnel of a differential inclusion,” Mat. Zametki,32, No. 6, 841–852 (1982). · Zbl 0509.49024
[286] A. A. Tolstonogov, ”Integral funnel equation of a differential inclusion in a Banach space and properties of its solutions,” Dokl. Akad. Nauk SSSR,276, No. 5, 1074–1078 (1984).
[287] A. A. Tolstonogov, ”On the set of solutions of a differential inclusion in a Banach space. II,” Sib. Mat. Zh.,25, No. 1, 159–173 (1984). · Zbl 0554.34008
[288] A. A. Tolstonogov, ”Extremal structure of an integral funnel of a linear differential inclusion in a Banach space and theorems on the existence of an optimal control,” in: Theoretical and Applied Problems in Optimal Control [in Russian], Nauka, Novosibirsk (1985), pp. 82–100.
[289] A. A. Tolstonogov, Differential Inclusions in a Banach Space [in Russian], Nauka, Novosibirsk (1986). · Zbl 0689.34014
[290] A. A. Tolstonogov and V. V. Goncharov, ”On the solutions of a differential inclusion with a noncompact-valued right-hand side in a Banach space,” Redkollegiya Sib. Mat. Zh., Novosibirsk (1986). (Manuscript deposited at VINITI, Jan. 30, 1986, No. 668-B).
[291] A. A. Tolstonogov and I. A. Finogenko, ”On the solutions of functional-differential inclusions,” Usp. Mat. Nauk,37, No. 4, 120 (1982). · Zbl 0468.34046
[292] A. A. Tolstonogov and I. A. Finogenko, ”On the solutions of a differential inclusion with a lower semicontinuous nonconvex right-hand side in a Banach space,” Mat. Sb.,125 (167), No. 2, 199–230 (1984). · Zbl 0588.34012
[293] Yu. Yu. Trokhimchuk, Yu. B. Zelinskii, and V. V. Sharko, ”On some results in the topology of manifolds, the theory of multivalued mappings, and Morse theory,” Trudy Mat. Inst. Akad. Nauk SSSR,154, 222–230 (1983). · Zbl 0531.57002
[294] S. P. Uryas’ev, ”A method for solving equations for multivalued mappings,” in: Third Symposium on Methods for Solving Nonlinear Equations and Problems of Optimization (Tallinn, 1984), Reports and Communications [in Russian], Valgus, Tallinn (1984), pp. 98–99.
[295] S. P. Uryas’ev, ”On the method of simple iterations for the solution of inclusions for multivalued mappings,” Kibernetika, No. 6, 115–116 (1985).
[296] V. I. Utkin and S. V. Dryakunov, ”Stochastic regularization of systems with discontinuous controls,” Dokl. Akad. Nauk SSSR,272, No. 5, 1069–1072 (1983).
[297] A. I. Fedorov, ”Polymorphisms and partitionings of Lebesgue spaces,” Funkts. Anal. Prilozhen.,16, No. 2, 88–89 (1982).
[298] V. V. Fedorchuk, ”On geometric properties of covariant functors,” Usp. Mat. Nauk,39, No. 5, 169–208 (1984). · Zbl 0572.54013
[299] A. F. Filippov, Differential Equations with a Discontinuous Right-Hand sides [in Russian], Nauka, Moscow (1985).
[300] V. V. Filippov, ”On the existence and the properties of solutions of ordinary differential equations and differential inclusions,” Dokl. Akad. Nauk SSSR,279, No. 1, 47–50 (1984).
[301] V. V. Filippov, ”On Luzin’s theorem and the right-hand sides of differential inclusions,” Mat. Zametki,37, No. 1, 93–98 (1985).
[302] V. V. Filippov, ”On ordinary dlrrerential equations with singularities in the righthand side,” Mat. Zametki,38, No. 6, 832–851 (1985).
[303] V. V. Filippov, ”The axiomatic theory of the spaces of solutions of ordinary differential equations and differential inclusions,” Dokl. Akad. Nauk SSSR,280, No. 2, 304–308 (1985).
[304] V. V. Filippov, ”On the theory of the spaces of solutions of ordinary differential equations,” Dokl. Akad. Nauk SSSR,285, No. 5, 1073–1077 (1985).
[305] V. V. Filippov, ”On the existence and the properties of solutions of ordinary differential equations and differential inclusions,” Differents. Uravn.,22, No. 6, 968–977 (1986).
[306] I. A. Finogenko, ”On the existence of solutions of certain functional-differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 154–157.
[307] I. A. Finogenko, ”On the solutions of certain functional-differential inclusions in a Banach space,” Redkollegiya Zh. Differents. Uravn., Minsk (1981). (Manuscript deposited at VINITI, Oct. 13, 1981, No. 4765-81 Dep.)
[308] I. A. Finogenko, ”On the solutions of certain functional-differential inclusions in a Banach space,” Differents. Uravn.,18, No. 11, 2001–2002 (1982). · Zbl 0503.34034
[309] I. A. Finogenko, ”On implicit functional-differential equations in a Banach space,” in: Dynamics of Nonlinear Systems [in Russian], Nauka, Novosibirsk (1983), pp. 151–164. · Zbl 0569.34058
[310] I. A. Finogenko, ”On the existence of solutions of implicit differential equations,” in: Differential Equations and Numerical Methods [in Russian], Novosibirsk (1986), pp. 115–123.
[311] V. L. Khatskevich, ”The Cauchy problem for differential inclusions with maximally monotone operators,” in: Applications Methods of Functional Analysis [in Russian], Voronezh (1985), pp. 162–170.
[312] V. Z. Tsalyuk, ”Perturbations of exponentially stable differential inclusions by generalized functions,” Mat. Fiz. (Kiev), No. 28, 34–40 (1980). · Zbl 0447.34053
[313] V. Z. Tsalyuk, ”Two definitions of the solution of a differential inclusion, perturbed by a measure,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1981). (Manuscript deposited at VINITI, Aug. 19, 1981, No. 4104-81 Dep.)
[314] V. Z. Tsalyuk, ”Thep-center of a convex set and a theorem on the Lipschitz selector,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1981). (Manuscript deposited at VINITI, Nov. 9, 1981, No. 5147-81 Dep.)
[315] V. Z. Tsalyuk, ”The invariant set of a dissipative multivalued mapping,” Voronezh Univ., Voronezh (1983). (Manuscript deposited at VINITI, Dec. 7, 1983, No. 6629-83 Dep.)
[316] V. Z. Tsalyuk, ”The Lyapunov function for a class of differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1983), pp. 47–50.
[317] V. Z. Tsalyuk, ”Lipschitz convex-valued approximation of a multivalued function,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4576-84 Dep.)
[318] V. Z. Tsalyuk, ”The construction of the Lyapunov function for a homogeneous differential inclusion and its use for the estimation of solutions of inclusions with a measure,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4578-84 Dep.)
[319] V. Z. Tsalyuk, ”A theorem on the preservation of the exponential stability under the perturbation of the right-hand side of a periodic differential inclusion,” Magnitogorsk. Gorno-Metallurg. Inst., Magnitogorsk (1984). (Manuscript deposited at VINITI, Jul. 2, 1984, No. 4577-84 Dep.).
[320] V. Z. Tsalyuk, ”The behavior of the solutions of a periodic differential inclusion with a measure,” in: Boundary Value Problems [in Russian], Perm (1984), pp. 126–130.
[321] V. Z. Tsalyuk, ”The existence of a periodic solution of a differential inclusion with measure,” Differents. Uravn.,22, No. 5, 794–802 (1986).
[322] N. K. Cheban, ”Recurrence for points and domains in partially ordered semigroups of multivalued mappings of a space,” in: Investigations in Functional Analysis and Differential Equations [in Russian], Shtiintsa, Kishinev (1981), pp. 108–116.
[323] N. K. Cheban, ”Extensions in dispersive dynamical systems,” Mat. Issled., No. 77, 137–145 (1984). · Zbl 0551.34023
[324] I. A. Chirkova, ”Nonwandering points and the set of central motions in discontinuous dispersive dynamical systems,” Mat. Issled., No. 88, 151–154 (1986). · Zbl 0599.34040
[325] S. V. Chistyakov, ”On noncooperative differential games,” Dokl. Akad. Nauk SSSR,259, No. 5, 1052–1055 (1981).
[326] M. M. Choban and D. M. Ipate, ”On the approximation of multivalued mappings and their applications to game theory. I,” Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 25–29 (1980). · Zbl 0465.54007
[327] M. M. Choban and D. M. Ipate, ”On the approximation of multivalued mappings and their applications to game theory. II,” Izv. Akad. Nauk Moldav. SSR Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 33–39 (1981). · Zbl 0515.54015
[328] P. I. Chugunov, ”On the properties of the regular solutions of differential inclusions,” in: Boundary Value Problems [in Russian], Perm (1980), pp. 150–153.
[329] P. I. Chugunov, ”Theorem on the density of solutions of a differential inclusion and its application to a model of economic dynamics,” Optimizatsiya, No. 26 (43), 129–140 (1981). · Zbl 0526.34009
[330] P. I. Chugunov, ”On correct solutions of differential inclusions,” Differents. Uravn.,17, No. 4, 660–668 (1981).
[331] P. I. Chugunov, ”On the dependence of the solutions of a differential inclusion on initial conditions and on the parameter,” Differents. Uravn.,17, No. 8, 1426–1433 (1981).
[332] P. I. Chugunov, ”On the asymptotic behavior of solutions of differential inclusions,” Differents. Uravn.,20, No. 4, 604–613 (1984). · Zbl 0548.34013
[333] P. A. Shvartsman, ”Lipschitz sections of multivalued mappings and traces of functions from the Zygmund class on an arbitrary compactum,” Dokl. Akad. Nauk SSSR,276, No. 3, 559–562 (1984).
[334] L. A. Sheikhzamanova, ”On the distribution of the zeros of the components of the ???solutions of a two-dimensional system of integrodifferential equations,” Inst. Mat. Mekh., Akad. Nauk AzSSR, Baku (1982). (Manuscript deposited at VINITI, July 14, 1982, No. 3761-82 Dep.)
[335] A. A. Shestakov and A. N. Stepanov, ”On certain concepts of semidynamical systems for multivalued flows,” in: Collection of Scientific Proceedings of the All-Union Correspondence Institute of Railroad Transportation Engineers, No. 109 (1980), pp. 67–70.
[336] V. I. Shmyrev, ”On the question of the determination of fixed points of piecewise constant monotone mappings inR n,” Dokl. Akad. Nauk SSSR,259, No. 2, 299–301 (1981).
[337] A. S. Shube, ”Two examples of semidynamical systems,” Mat. Issled., No. 77, 168–172 (1984). · Zbl 0548.34048
[338] A. S. Shube, ”The Poisson stability of the motion of semicontinuous semidynamic systems in the plane,” Mat. Issled., No, 88, 155–168 (1986).
[339] S. Abdelmajid, ”On a quasilinear elliptic partial differential equation of Thomas-Fermi type,” Boll. Un. Mat. Ital.,4B, No. 3, 685–707 (1985). · Zbl 0605.35025
[340] L. Adamczyk, ”Semi-ciaglosc uogolnionej projekcji metrycznej,” Pr. Nauk AE Wroclawiu, No. 236, 167–181 (1983).
[341] S. Aizicovici, ”On the asymptotic behaviour of solutions of Volterra equations in Hilbert space,” Nonlinear Anal.,7, No. 3, 271–278 (1983). · Zbl 0507.45018
[342] S. Aizicovici, ”Un résultat d’existence pour une équation non linéaire du type Volterra,” C. R. Acad. Sci. Paris, Ser. I Math.,301, No. 18, 829–832 (1985). · Zbl 0587.45018
[343] K. Akazawa and S. Osada, ”On a characterization of flow-invariant sets by the distance function on Hilbert space,” Mem. Fac. Eng. Tamagawa Univ., No. 20. 301–315 (1985).
[344] J. Albrycht and M. Matloka, ”On fuzzy multivalued functions. Part 2: Some topological properties,” Fuzzy Sets and Systems,15, No. 2, 193–197 (1985). · Zbl 0583.54011
[345] J. C. Alexander and P. M. Fitzpatrick, ”Global bifurcation for solutions of equations involving several parameter multivalued condensing mappings,” Lect. Notes Math., No. 886, 1–19 (1981). · Zbl 0486.58010
[346] M. Ali Khan, ”On the integration of set-valued mappings in a nonreflexive Banach space. II,” Simon Stevin,59, No. 3, 257–267 (1985). · Zbl 0606.28007
[347] M.-C. Alicu and O. Mark, ”Some properties of the fixed points set for multifunctions,” Stud. Univ. Babes-Bolyai Math., 25, No. 4, 77–79 (1980). · Zbl 0467.54029
[348] M. Altman, ”Contractors and fixed points,” Contemp. Math.,21, 1–14 (1983). · Zbl 0526.47031
[349] F. D. Ancel, ”The role of countable dimensionality in the theory of cell-like relations,” Trans. Am. Math. Soc.,287, No. 1, 1–40 (1985). · Zbl 0507.54017
[350] D. E. Anderson, J. L. Nelson, and K. L. Singh, ”Fixed points for single and multivalued mappings in locally convex spaces,” Math. Japon.,31, No. 5, 665–672 (1986). · Zbl 0606.47058
[351] T. S. Angell, ”The controllability problem for nonlinear Volterra systems,” J. Optim. Theory Appl.,41, No. 1, 9–35 (1983). · Zbl 0497.93010
[352] T. S. Angell, ”Existence of solutions of multivalued Urysohn integral equations,” J. Optim. Theory Appl.,46, No. 2, 129–151 (1985). · Zbl 0543.45009
[353] G. Anichini, ”Boundary value problem for multivalued differential equations and controllability,” J. Math. Anal. Appl.,105, No. 2, 372–382 (1985). · Zbl 0574.49020
[354] G. Anichini, G. Conti, and P. Zecca, ”Approximation of nonconvex set valued mappings,” Boll. Un. Mat. Ital., Ser. VI,4C, No. 1, 145–154 (1985). · Zbl 0591.54013
[355] G. Anichini, G. Conti, and P. Zecca, ”A further result on the approximation of nonconvex set valued mappings,” Boll. Un. Mat. Ital., Ser. VI,4C, No. 1, 155–171 (1985). · Zbl 0607.54015
[356] G. Anichini and P. Zecca, ”Multivalued differential equations and control problems,” Houston J. Math.,10, No. 3, 307–313 (1984). · Zbl 0561.34010
[357] M.-C. Anisiu, ”Point-to-set mappings. Continuity,” Preprint Babes-Bolyai Univ. Fac. Math. Res. Semin., No. 3, Semin. Fixed Point Theory (1981), pp. 1–100.
[358] M.-C. Anisiu, ”On the continuity of point-to-set mappings,” Preprint Babes-Bolyai Univ. Fac. Math. Res. Sem., No. 3, 20–23 (1985).
[359] O. Arino, S. Gautier, and J. P. Penot, ”A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations,” Publ. Math. Univ. de Pau et des Pays de l’Adour, Fac. Sci. Exact., I/1–I/11 (1980). · Zbl 0599.34008
[360] O. Arino, S. Gautier, and J. P. Penot, ”A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations,” Funkcial. Ekvac.,22, No. 3, 273–279 (1984). · Zbl 0599.34008
[361] T. E. Armstrong, ”Full houses and cones of excessive functions,” Indiana Univ. Math. J.,29, No. 5, 737–746 (1980). · Zbl 0417.60053
[362] Z. Artstein, ”Limit laws for multifunctions applied to an optimization problem,” Lect. Notes Math., No. 1091, 66–79 (1984). · Zbl 0563.60032
[363] Z. Artstein, ”On dense univalued representations of multivalued maps,” Rend. Circ. Mat. Palermo,33, No. 3, 340–350 (1984). · Zbl 0581.28006
[364] H. Asakawa, ”Accretivity and duality map in Banach space,” Proc. Jpn. Acad., Ser. A,60, No. 6, 201–204 (1984). · Zbl 0598.47060
[365] I. Assani, ”Quelques résultats liés aux ensembles décomposables de LE 1,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 19, 641–644 (1982). · Zbl 0489.46029
[366] I. Assani and H.-A. Klei, ”Parties décomposables compactes de LE 1,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 16, 533–536 (1982). · Zbl 0489.46028
[367] J.-P. Aubin, ”Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions,” in: Mathematical Analysis and Applications, Essays dedicated to Laurent Schwartz on the occasion of his 65th birthday (editor: L. Nachbin), Part A, Adv. in Math., Supplementary Studies,7A, Academic Press, New York (1981), pp. 159–229.
[368] J.-P. Aubin, ”Heavy viable trajectories of a decentralized allocation mechanism,” Lecture Notes in Control and Information Sciences, No. 62, 487–501 (1984).
[369] J.-P. Aubin, ”Slow and heavy viable trajectories of controlled problems. Smooth viability domains,” Lect. Notes Math., No. 1091, 105–116 (1984).
[370] J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin (1984). · Zbl 0538.34007
[371] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York (1984). · Zbl 0641.47066
[372] J.-P. Aubin and H. Frankowska, ”Trajectories lourdes de systèmes contrÔlés,” C. R. Acad. Sci. Paris, Ser. I Math.,298, No. 20, 521–524 (1984). · Zbl 0561.49011
[373] J.-P. Aubin, H. Frankowska, and Cz. Olech, ”Controlabilité des processus convexes,” C. R. Acad. Sci. Paris, Ser. I,301, No. 5, 153–156 (1985). · Zbl 0584.49023
[374] J.-P. Aubin, H. Frankowska, and Cz. Olech, ”Controllability of convex processes,” in: Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale, Florida, Dec. 11–13, 1985, Vol. 2, New York (1985), pp. 1358–1360.
[375] B. Aupetit, ”Analytic multivalued functions in Banach algebras and uniform algebras,” Adv. Math.,44, No. 1, 18–60 (1982). · Zbl 0486.46041
[376] B. Aupetit, ”Geometry of pseudoconvex open sets and distribution of values of analytic multivalued functions,” Contemp. Math.,32, 15–34 (1984). · Zbl 0595.32027
[377] B. Aupetit and A. Zraibi, ”Distribution des valeurs des fonctions analytiques multiformes,” Studia Math.,79, No. 3, 217–226 (1984). · Zbl 0506.46039
[378] U. Avraham, ”Free sets for nowhere-dense set mappings,” Israel J. Math.,39, No. 1–2, 167–176 (1981). · Zbl 0489.03019
[379] A. Baccari and A. Trad, ”Stabilite exponentielle des solutions d’équilibre des systemes differentiels a seconds membres localement lipschitziens,” C. R. Acad. Sci. Paris, Ser. I Math.,302, No. 12, 439–442 (1986). · Zbl 0615.34047
[380] A. Bacciotti and G. Stefani, ”Self-accessibility of a set with respect to a multivalued field,” J. Optim. Theory Appl.,31, No. 4, 535–552 (1980). · Zbl 0417.49048
[381] S. Bagchi, ”On a.s. convergence of classes of multivalued asymptotic martingales,” Ann. Inst. H. Poincaré, Probab. Statist.,21, No. 4, 313–321 (1985). · Zbl 0577.60010
[382] M. Bakleh, ”Linéarisation d’une équation différentielle multivoque,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 8, 349–352 (1983). · Zbl 0524.34017
[383] E. J. Balder, ”An extension of the essential supremum concept with applications to normal integrands and multifunctions,” Bull. Austral. Math. Soc.,27, No. 3, 407–418 (1983). · Zbl 0545.28005
[384] T. Bânzaru, ”On the upper semicontinuity of upper topological limits for multifunction nets,” Inst. Politehn. ”Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., May, 59–64 (1983).
[385] T. Bânzaru and N. Crivat, ”Net characterization of almost periodicity for multivalued mappings,” in: Proc. Sem. Functional Equations, Approximation, and Convexity, Timisoara (1980), pp. 163–168.
[386] T. Bânzaru and N. Crivat, ”On almost periodic multivalued maps with values in uniform spaces,” Bul. stiint. Tehn. Inst. Politehn. ”Traian Vuia” Timisoara,26 (40), No. 2, 47–51 (1981).
[387] T. Bânzaru and N. Crivat, ”Net characterization of almost periodicity for multivalued mappings,” Bul. Stunt. Tehn. Inst. Politehn. ”Traian Vuia” Timisoara,27, No. 1, 59–62 (1982).
[388] T. Bânzaru and N. Crivat, ”A compactness criterion for families of almost periodic multifunctions,” Bul. Stiint. Tehn. Inst. Politehn. Timisoara, Constr.,27, No. 1–2, 1–6 (1982).
[389] T. Bânzaru and N. Crivat, ”Linear multifunctions,” Inst. Politehn. ”Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., May, 23–28 (1984).
[390] T. Bânzaru and N. Crivat, ”On the continuity of linear multifunctions,” in: Proc. Fifteenth National Conference on Geometry and Topology, Timisoara (1984), pp. 7–10.
[391] T. Bânzaru and B. Rendi, ”Relations between various notions for continuity of multifunctions,” Inst. Politehn. Timisoara, Lucrar. Sem. Mat. Fiz., November, 73–76 (1984). · Zbl 0626.54022
[392] R. Barbolla and J. Fontanillas, ”Selections uniformement continues dans les éspaces uniformes de dimension faiblement finie,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 1, 47–50 (1982). · Zbl 0477.54009
[393] V. Barbu, ”The time-optimal control problem for parabolic variational inequalities,” Appl. Math. Optim.,11, No. 1, 1–22 (1984).
[394] V. Barbu, Optimal Control of Variational Inequalities, Res. Notes Math., No. 100, Pitman, Boston (1984).
[395] V. Barbu, ”The time optimal control of variational inequalities. Dynamic programming and the maximum principle,” Lect. Notes Math., No. 1119, 1–19 (1985).
[396] V. Barbu and G. Morosanu, ”Existence for a nonlinear hyperbolic system,” Nonlinear Anal.,5, No. 4, 341–353 (1981). · Zbl 0471.35054
[397] E. Barcz, ”Some fixed points theorems for multivalued mappings,” Demonstratio Math.,16, No. 3, 735–744 (1983). · Zbl 0574.54045
[398] C. Bardaro and P. Pucci, ”Some contributions to the theory of multivalued differential equations,” Atti Sem. Mat. Fis. Univ. Modena,32, No. 1, 175–202 (1983). · Zbl 0542.34009
[399] B. R. Barmish, ”Global and point controllability of uncertain dynamical systems,” IEEE Trans. Automat. Control,AC-27, No. 2, 399–408 (1982). · Zbl 0488.49027
[400] E. N. Barron and R. Jensen, ”A nonlinear evolution system with two subdifferentials and monotone differential games,” J. Math. Anal. Appl.,97, No. 1, 65–80 (1983). · Zbl 0522.90110
[401] L. Barthelemy and F. Catte, ”Application de la théorie des semi-groupes non linéaires dans L8 a l’étude d’une classe d’inéquations quasi-variationnelles,” Ann. Fac. Sci. Toulouse Math.,4, No. 2, 165–190 (1982).
[402] G. Bartuzel and A. Fryszkowski, ”On existence of solutions for inclusion {\(\delta\)} u {\(\epsilon\)}F(x, ),” Seminarber. Humboldt-Univ. Berlin Sekt. Math., No. 65 (1984), pp. 1–7.
[403] E. Bednarczuk,” Duality and stability theorems for convex multivalued constrained minimization problems,” Control Cybernet.,12, No. 3–4, 133–146 (1983). · Zbl 0562.49007
[404] G. Beer, ”The approximation of upper semicontinuous multifunctions by step multifunction, ” Pac. J. Math.,87, No. 1, 11–19 (1980). · Zbl 0442.54014
[405] G. Beer, ”On functions that approximate relations,” Proc. Am. Math. Soc.,88, No. 4, 643–647 (1983). · Zbl 0524.54015
[406] G. Beer, ”Dense selections,” J. Math. Anal. Appl.,95, No. 2, 416–427 (1983). · Zbl 0488.54010
[407] G. Beer, ”Approximate selections for upper semicontinuous convex valued multifunctions,” J. Approx. Theory,39, No. 2, 172–184 (1983). · Zbl 0536.41039
[408] G. Beer, ”On a theorem of Deutsch and Kenderov,” J. Approx. Theory,45, No. 2, 90–98 (1985). · Zbl 0608.41021
[409] G. Beer, ”On convergence of closed sets in a metric space and distance function,” Bull. Austral. Math. Soc.,31, No. 3, 421–432 (1985). · Zbl 0558.54007
[410] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, ”Une alternative non linéaire en analyse convexe et applications,” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 3, 257–259 (1982). · Zbl 0521.47027
[411] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, ”Points fixes et coincidences pour les fonctions multivoques (applications de Ky Fan),” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 4, 337–340 (1982). · Zbl 0525.47042
[412] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, ”Points fixes et coincidences pour les fonctions multivoques. II. (Applications de type et *), ” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 5, 381–384 (1982). · Zbl 0525.47043
[413] Ph. Bénilan and F. Catte, ”équation d’évolution du type (du/dt)+maxA i u= f par la théorie des semi-groupes non linéaires dans L8,” C. R. Acad. Sci. Paris, Ser. I Math.,295, No. 7, 447–450 (1982).
[414] I. Benkö, ”Continuous families of subspaces,” Bul. Univ. Brasov, Ser. C,21, 35–39 (1979). · Zbl 0464.46041
[415] L. M. Benveniste and J. A. Scheinkman, ”Duality theory for dynamic optimization models of economics: the continuous time case,” J. Econom. Theory,27, No. 1, 1–19 (1982). · Zbl 0503.90023
[416] R. M. Bianchini and G. Stefani, ”Multivalued fields and control systems with unbounded controls,” Ricerche Automat.,12, No. 1, 33–49 (1981). · Zbl 0524.49026
[417] R. M. Bianchini Tiberio and P. Zecca, ”Local controllability for autonomous nonlinear systems,” J. Optim. Theory Appl.,31, No. 1, 69–83 (1980). · Zbl 0417.93015
[418] R. M. Bianchini and P. Zecca, ”On the attainable set at time T for multivalued differential equations,” Nonlinear Anal.,5, No. 10, 1053–1059 (1981). · Zbl 0469.49028
[419] M. F. Bidaut-Veron, ”équations elliptiques fortement non linéaires dans des domaines non bornés,” Publ. Math. Univ. de Pau et des Pays de l’Adour, Fac. Sci. Exact.,7, 1–69 (1979).
[420] M. F. Bidaut-Veron, ”Principe de maximum et support compact pour une classe d’équations elliptiques non linéaires d’ordre 4,” Publ. Math. Univ. de Pau et des Pays de l’Adour, Fac. Sci. Exact.,8, 1–18 (1979).
[421] M. F. Bidaut-Veron, ”Nonlinear elliptic equations of order 2m and subdifferentials,” J. Optim. Theory Appl.,40, No. 3, 405–432 (1983). · Zbl 0494.35041
[422] V. I. Blagodatskikh, ”Sufficient conditions for optimality in problems with state constraints,” Appl. Math. Optim.,7, No. 2, 149–157 (1981). · Zbl 0485.49013
[423] H.-P. Blatt, G. Nurnberger, and M. Sommer, ”A characterization of pointwise-Lipschitz-continuous selections for the metric projection,” Numer. Funct. Anal. Optim.,4, No. 2, 101–121 (1981–82). · Zbl 0488.41034
[424] J. Blatter and L. Schumaker, ”The set of continuous selections of a metric projection in C(X),” J. Approx. Theory,36, No. 2, 141–155 (1982). · Zbl 0493.41030
[425] J. Blatter and L. Schumaker, ”Continuous selections and maximal alternators for spline approximation,” J. Approx. Theory,38, No. 1, 71–80 (1983). · Zbl 0582.41013
[426] J. Blazek, ”Some remarks on the duality mapping,” Acta Univ. Carolin. Math. Phys.,23, No. 2, 15–19 (1983). · Zbl 0528.46011
[427] I. Blum and S. Swaminathan, ”Continuous selections and realcompactness,” Pac. J. Math.,93, No. 2, 251–260 (1981). · Zbl 0457.54012
[428] E. Bonan, ”Sur les selections injectives du type fini,” Cahiers Topologie Geom. Différentielle Catégoriques,27, No. 2, 147–150 (1986). · Zbl 0619.05002
[429] P. Borowko, ”Application of a certain method of approximation to the theory of orientor fields and differential games,” J. Differential Equations,48, No. 1, 17–34 (1983). · Zbl 0516.34015
[430] J. M. Borwein, ”A note on{\(\epsilon\)}-subgradients and maximal monotonicity,” Pac. J. Math.,103, No. 2, 307–314 (1982). · Zbl 0525.49010
[431] A. P. Bosznay, ”A remark on a problem of G. Godini,” Ann. Univ. Sci. Budapest. Eotvos Sect. Math.,26, 191–193 (1983). · Zbl 0532.41040
[432] M. A. Boudourides, ”On the asymptotic behavior of solutions of multivalued differential equations,” Boll. Un. Mat. Ital., Ser. VI,1C, No. 1, 23–32 (1982). · Zbl 0529.34053
[433] M. A. Boudourides and A. Meimaridou-Kokkou, ”Boundedness of multivalued differential equations,” Bull. Math. Soc. Sci. Math. R. S. Roumaine,29 (77), No. 1, 3–7 (1985). · Zbl 0563.34011
[434] M. A. Boudourides and J. Schinas, ”The mean value theorem for multifunctions,” Bull. Math. Soc. Sci. Math. R. S. Roumaine,25 (73), No. 2, 129–141 (1981). · Zbl 0472.58003
[435] M. A. Boudourides and J. Schinas, ”On the application of Lyapunov’s second method to multivalued differential equations,” Rev. Roumaine Math. Pures Appl.,28, No. 10, 949–952 (1983). · Zbl 0526.34011
[436] W. W. Breckner, ”A principle of condensation of singularities for set-valued functions,” Anal. Numer. Theor. Approx.,12, No. 2, 101–111 (1983). · Zbl 0527.54015
[437] Y. Brenier, ”Averaged multivalued solutions for scalar conservation laws,” SIAM J. Numer. Anal.,21, No. 6, 1013–1037 (1984). · Zbl 0565.65054
[438] A. Bressan, ”Sulla funzione tempo minimo nei sistemi non lineari,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),66, No. 5, 383–388 (1979). · Zbl 0466.49008
[439] A. Bressan, ”On differential relations with lower continuous right-hand side,” J. Differential Equations,37, No. 1, 89–97 (1980). · Zbl 0418.34017
[440] A. Bressan, ”Solutions of lower semicontinuous differential inclusions on closed sets,” Rend. Sem. Mat. Univ. Padova,69, 99–107 (1983). · Zbl 0524.34015
[441] F. E. Browder, ”Degree of mapping for nonlinear mappings of monotone type: densely defined mapping,” Proc. Nat. Acad. Sci. U.S.A.,80, No. 8, 2405–2407 (1983). · Zbl 0533.47052
[442] F. E. Browder, ”Coincidence theorems, minimax theorems, and variational inequalities,” Contemp. Math.,26, 67–80 (1984). · Zbl 0542.47046
[443] R. E. Bruck, ”On the weak asymptotic almost-periodicity of bounded solutions of u” {\(\epsilon\)}Au+f for monotoneA,” J. Differential Equations,37, No. 3, 309–317 (1980). · Zbl 0439.34036
[444] R. E. Bruck, ”Asymptotic behavior of nonexpansive mappings,” Contemp. Math.,18, 1–47 (1983). · Zbl 0528.47039
[445] G. Bruckner, ”On abstract quasivariational inequalities. Approximation of solutions. I,” Math. Nachr.,104, 209–216 (1981). · Zbl 0491.49008
[446] Bui Cong Cu’o’ng, ”Some fixed point theorems for multifunctions in topological vector spaces (announcement of results),” Bull. Polish Acad. Sci. Math.,32, No. 3–4, 215–221 (1984). · Zbl 0581.47043
[447] Bui Cong Cu’o’ng, ”Intersection theorems, fixed point theorems and variational inequalities,” Summary of results. Preprint IPI PAN, No. 556, 1984.
[448] Bui Cong Cuong, ”Some fixed point theorems for multifunctions with applications in game theory,” Dissertationes Math. (Rozprawy Mat.), No. 245 (1985).
[449] Bui Khoi Dam and Nguyen Duy Tien, ”On the multivalued asymptotic martingales,” Acta Math. Vietnam.,6, No. 1, 77–87 (1981).
[450] W. Bula, ”The selection theorem for mappings on the Cantor bundle,” Bull. Polish Acad. Sci. Math.,31, No. 9–12, 399–402 (1983). · Zbl 0548.54012
[451] J. P. Burgess, ”Careful choices – a last word on Borel selectors,” Notre Dame J. Formal Logic,21, No. 3, 219–226 (1981). · Zbl 0423.04002
[452] J. P. Burgess, ”Classical hierarchies from a modern standpoint. Part I. C-sets,” Fund. Math.,115, No. 2, 81–95 (1983). · Zbl 0515.28002
[453] D. Butnariu, ”Fixed points for fuzzy mappings,” Fuzzy Sets and Systems,7, No. 2, 191–207 (1982). · Zbl 0473.90087
[454] M. L. Buzano and L. Gobbo, ”Some properties of linear operators of accretive type,” Rend. Sem. Mat. Univ. Politec. Torino,42, No. 1, 105–116 (1984). · Zbl 0599.47082
[455] E. Campu, ”Multiéquations différentielles dans les éspaces de Banach et opérateurs associés,” in: Proc. Fourth Conf. Operator Theory (Timisoara/Herculane, 1979), Univ. Timisoara, Timisoara (1980), pp. 209–213.
[456] A. Carbone, ”A remark on the notion of {\(\Phi\)}-coherent multivalued maps,” Atti. Soc. Peloritana Sci. Fis. Mat. Natur.,27, 47–55 (1981). · Zbl 0592.54045
[457] T. Cardinali and A. Fiacca, ”Selezioni continue ed equazioni differenziali multivoche,” Rend. Istit. Mat. Univ. Trieste,12, No. 1–2, 87–99 (1985).
[458] G. Caristi, ”Un teorema di prolungamento e alcune proprieta delle soluzioni del problema di Cauchy per una equazione differenziale multivoca,” Rend. Istit. Mat. Univ. Trieste,12, No. 1–2, 61–68 (1980). · Zbl 0423.34084
[459] O. Carja, ”On the minimal time function for distributed control systems in Banach spaces,” J. Optim. Theory Appl.,44, No. 3, 397–406 (1984). · Zbl 0536.49023
[460] C. Castaing, ”Un résultat d’existence de selection mesurable et compacité forte de l’intégrale d’une multiapplication dans un Banach non necessairement séparable,” Ann. Mat. Pura Appl.,133, 363–368 (1983). · Zbl 0551.28013
[461] C. Castaing and P. Clauzure, ”Compacité faible dans l’éspaceL E 1 et dans l’éspace des multifonctions integralement bornées, et minimisation,” Ann. Mat. Pura Appl.,140, 345–364 (1985). · Zbl 0606.28006
[462] M. Cecchi, M. Furi, and M. Marini, ”On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals,” Nonlinear Anal.,9, No. 2, 171–180 (1985). · Zbl 0563.34018
[463] J. Ceder, ”Characterizations of Darboux selections,” Rend. Circ. Mat. Palermo,30, No. 3, 461–470 (1981). · Zbl 0488.26002
[464] J. Ceder, ”Some problems on Borel 1 selections,” Real Anal. Exchange,8, No. 2, 502–503 (1982–83).
[465] J. Ceder, ”On some questions on Borel 1 selections,” Rend. Circ. Mat. Palermo,33, No. 2, 291–304 (1984). · Zbl 0563.54013
[466] J. Ceder and S. Levi, ”On the search for Borel 1 selections,” Casopis Pest. Mat.,110, No. 1, 19–32 (1985). · Zbl 0575.28008
[467] A. Cellina, ”On the differential inclusion x’ {\(\epsilon\)} [, 1],” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),69, No. 1–2, 1–6 (1980(1981)).
[468] A. Cellina, G. Colombo, and A. Fonda, ”Approximate selections and fixed points for upper semicontinuous maps with decomposable values,” Proc. Am. Math. Soc.,98, No. 4, 663–666 (1986). · Zbl 0606.54018
[469] A. Cellina and M. V. Marchi, ”Nonconvex perturbations of maximal monotone differential inclusions,” Israel J. Math.,46, No. 1–2, 1–11 (1983). · Zbl 0542.47036
[470] L. Cesari, Optimization – Theory and Applications: Problems with Ordinary Differential Equations, Springer, New York (1983). · Zbl 0506.49001
[471] L. Cesari and S. H. Hou, ”Existence of solutions and existence of optimal solutions. The quasilinear case,” Rend. Circ. Mat. Palermo,34, No. 1, 5–45 (1985). · Zbl 0577.49003
[472] A. Chabi and A. Haraux, ”Un théorème de valeurs intérmédiaires dans les éspaces de Sobolev et applications,” Ann. Fac. Sci. Toulouse Math.,7, No. 2, 87–100 (1985). · Zbl 0557.35055
[473] Kung-Ching Chang, ”Free boundary problems and the set-valued mappings,” J. Differential Equations,49, No. 1, 1–28 (1983). · Zbl 0533.35088
[474] Shih-sen Chang, ”Fixed point theorems for fuzzy mappings,” Fuzzy Sets and Systems,17, No. 2, 181–187 (1985). · Zbl 0579.54034
[475] Guang-Ya Chen and Yu-Yun Wang, ”Generalized Hahn-Banach theorems and subdifferential of set-valued mapping,” J. Xitong Kexue yu Shuxue (Systems Sci. Math. Sci.),5, No. 3, 223–230 (1985). · Zbl 0593.46008
[476] F. L. Chernousko, ”Guaranteed ellipsoidal estimates of state for dynamical systems,” in: Random Vibrations and Reliability, Akad.-Verlag, Berlin (1983), pp. 145–152. · Zbl 0552.49029
[477] C. E. Chidume, ”The iterative solution of the equationf {\(\epsilon\)}x + Tx for a monotone operatorT inL p spaces,” J. Math. Anal. Appl.,116, No. 2, 531–537 (1986). · Zbl 0606.47067
[478] J. P. R. Christensen, ”Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings,” Proc. Am. Math. Soc.,86, No. 4, 649–655 (1982). · Zbl 0506.54016
[479] Hu Shou Chuan, K. Deimling, and J. Pruss, ”Fixed points of weakly inward multivalued maps,” Nonlinear Anal.,10, No. 5, 465–469 (1986). · Zbl 0607.47055
[480] K. Ciesielski, ”Continuity in semidynamical systems,” Ann. Polon. Math.,46, 61–70 (1985). · Zbl 0602.54040
[481] F. H. Clarke, ”Periodic solutions to Hamiltonian inclusions,” J. Differential Equations,40, No. 1, 1–6 (1981). · Zbl 0461.34030
[482] F. H. Clarke, ”A variational proof of Aumann’s theorem,” Appl. Math. Optim.,7, No. 4, 373–378 (1981). · Zbl 0518.28007
[483] F. H. Clarke and I. Ekeland, ”Nonlinear oscillations and boundary value problems for Hamiltonian systems,” Arch. Rational. Mech. Anal.78, No. 4, 315–333 (1982). · Zbl 0514.34032
[484] F. H. Clarke and Ph. D. Loewen, ”Sensitivity analysis in optimal control,” in: Proc. 23rd IEEE Conf. Decision and Control, Las Vegas, Dec. 12–14, 1984, Vol. 3, New York (1984), pp. 1649–1654.
[485] F. H. Clarke and Ph. D. Loewen, ”The value function in optimal control: sensitivity, controllability, and time-optimality,” SIAM J. Control Optim.,24, No. 2, 243–263 (1986). · Zbl 0601.49020
[486] F. H. Clarke and R. B. Vinter, ”Local optimality conditions and Lipschitzian solutions to the Hamilton-Jacobi equation,” SIAM J. Control Optim.,21, No. 6, 856–870 (1983). · Zbl 0528.49019
[487] M. M. Coban, ”Set-valued mappings and extension of continuous mappings,” Lect. Notes Math., No. 1060, 11–16 (1984).
[488] D. I. A. Cohen, ”On the Kakutani fixed point theorem,” in: Numerical Solution of Highly Nonlinear Problems, North-Holland, Amsterdam (1980), pp. 239–240.
[489] G. Coletti and G. Regoli, ”Continuous selections and multivalued differential equations,” Riv. Mat. Univ. Parma,7, 361–366 (1981). · Zbl 0538.34008
[490] Gh. Constantin and V. Radu, ”On probabilistic{\(\delta\)}-continuity and proximate fixed points for multivalued functions in PM-spaces,” Rev. Roumaine Math. Pures Appl.,26, No. 3, 393–397 (1981). · Zbl 0463.60012
[491] G. Conti and R. Iannacci, ”Nonzero solutions of nonlinear systems of differential equations via fixed point theorems for multivalued maps,” Nonlinear Anal.,6, No. 5, 415–421 (1982). · Zbl 0492.34016
[492] G. Conti, I. Massabo, and P. Nistri, ”Set-valued perturbations of differential equations at resonance,” Nonlinear Anal.,6, No. 6, 1031–1041 (1980). · Zbl 0452.47078
[493] G. Conti and J. Pejsachowicz, ”Fixed point theorems for multivalued weighted maps,” Ann. Mat. Pura Appl.,126, 319–341 (1980). · Zbl 0463.55003
[494] M. J. Corless and G. Leitmann, ”Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Automat. Control,AC-26, No. 5, 1139–1144 (1981). · Zbl 0473.93056
[495] H. W. Corley, ”A fixed point interpretation of Pareto optimization,” IEEE Trans. Automat. Control,AC-26, No. 3, 766–767 (1981). · Zbl 0483.90069
[496] B. Cornet, ”Existence of slow solutions for a class of differential inclusions,” J. Math. Anal. Appl.,96, No. 1, 130–147 (1983). · Zbl 0558.34011
[497] J.-M. Coron, ”Solution périodique d’une equation d’évolution,” Proc. R. Soc. Edinburgh Sec. A,89, No. 3–4, 175–180 (1981). · Zbl 0501.35003
[498] C. Cortazar, ”The application of dissipative operators to nonlinear diffusion equations,” J. Differential Equations,47, No. 1, 1–23 (1983). · Zbl 0512.35050
[499] W. Coy, ”A common approach to the description, implementation and test generation of multivalued functions,” in: Proc. Eleventh Internat. Symp. on Multiple-Valued Logic, IEEE Comput. Soc., New York (1981), pp. 90–94.
[500] N. Crivat and T. Bânzaru, ”On the quasicontinuity of the limits for nets of multifunctions,” Inst. Politehn. ”Traian Vuia” Timisoara, Lucrar. Sem. Mat. Fiz., November, 37–40 (1983).
[501] Z. M. Ciuciurean, ”A Gould type integration of multifunctions,” Preprint Babes–Bolyai Univ. Fac. Math. Res. Semin., No. 6, 41–44 (1984).
[502] D. W. Curtis, ”Application of a selection theorem to hyperspace contractibility,” Can. J. Math.,37, No. 4, 747–759 (1985). · Zbl 0563.54008
[503] S. Czerwik, ”Continuous solutions of a system of functional inequalities,” Glas. Mat. Ser. III,19 (39), No. 1, 105–109 (1984). · Zbl 0542.39003
[504] S. Czerwik, ”Random fixed point theorems for a system of multivalued mappings,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,29 (77), No. 1, 9–18 (1985). · Zbl 0595.47042
[505] R. Dobrowska, ”Existence theorem for functional-integral equations with compact convex valued solutions,” Zest. Nauk. WSI Zielonej Gorze, No. 62, 35–40 (1979).
[506] R. Dobrowska, ”Continuous dependence on initial function of solutions of functional-integral equations with compact convex valued solutions,” Zest. Nauk. WSI Zielonej Gorze, No. 62, 41–45 (1979).
[507] R. Dacic, ”Fixed points of monotone multifunctions in partially ordered sets,” Publ. Inst. Math. (Beograd),27 (41), 41–50 (1980). · Zbl 0466.06003
[508] D. D. Ang and D. N. Thanh, ”A probabilistic analogue of the Bohnenblust-Karlin fixed point theorem,” Rev. Roumaine Math. Pures Appl.,26, No. 4, 567–569 (1981). · Zbl 0458.60065
[509] F. S. De Blasi, ”Characterizations of certain classes of semicontinuous multifunctions by continuous approximations,” J. Math. Anal. Appl.,106, No. 1, 1–18 (1985). · Zbl 0574.54012
[510] F. S. De Blasi and J. Myjak, ”A remark on the definition of topological degree for set-valued mappings,” J. Math. Anal. Appl.,92, No. 2, 445–451 (1983). · Zbl 0524.47038
[511] F. S. De Blasi and J. Myjak, ”Sur l’existence de selections continues,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 17, 737–739 (1983). · Zbl 0527.54016
[512] F. S. De Blasi and J. Myjak, ”On the solutions sets for differential inclusions,” Bull. Polish Acad. Sci. Math.,33, No. 1–2, 17–23 (1985). · Zbl 0571.34008
[513] F. S. De Blasi and J. Myjak, ”Continuous selections for weakly Hausdorff lower semicontinuous multifunctions,” Proc. Am. Math. Soc.,93, No. 2, 369–372 (1985). · Zbl 0565.54013
[514] F. S. De Blasi and J. Myjak, ”On continuous approximations for multifunctions,” Pac. J. Math.,123, No. 1, 9–31 (1986). · Zbl 0595.47037
[515] F. S. De Blasi and G. Pianigiani, ”Remarks on Hausdorff continuous multifunctions and selections,” Comment. Math. Univ. Carolin.,24, No. 3, 553–561 (1983). · Zbl 0548.54011
[516] F. S. De Blasi and G. Pianigiani, ”The Baire category method in existence problem for a class of multivalued differential equations with nonconvex right hand side,” Funkcial. Ekvac.,28, No. 2, 139–156 (1985). · Zbl 0584.34007
[517] E. De Giorgi, A Marino, and M. Tosques, ”Funzioni (p, q)-convesse,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),73, No. 1–4, 6–14 (1982(1983)). · Zbl 0521.49011
[518] M. Degiovanni, A. Marino, and M. Tosques, ”Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators,” Ricerche Mat.,33, No. 1, 81–112 (1984). · Zbl 0582.49005
[519] P. Deguire and A. Granas, ”Sur une certaine alternative non-linéaire en analyse convexe,” Stud. Math.,83, No. 2, 127–138 (1986). · Zbl 0659.49003
[520] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985). · Zbl 0559.47040
[521] K. Deimling, ”Fixed points ot weakly inward multis,” Nonlinear Anal.,10, No. 11, 1261–1262 (1986). · Zbl 0605.47053
[522] I. Del Prete and M. B. Lignola, ”On convergence of closed-valued multifunctions,” Boll. Un. Mat. Ital.,2B, No. 3, 819–834 (1983). · Zbl 0535.54006
[523] I. Del Prete and M. B. Lignola, ”On the existence of convergent multifunctions subsequences,” Rend. Accad. Sci. Fis. Mat. Napoli,52, No. 1, 57–61 (1985). · Zbl 1145.90431
[524] V. Denicolo, ”Independent social choice correspondences are dictatorial,” Econom. Lett.,19, No. 1, 9–12 (1985). · Zbl 1273.91147
[525] W. Desch and R. Grimmer, ”Invariance and wave propagation for nonlinear integrodifferential equations in Banach spaces,” J. Integral Equations,8, No. 2, 137–164 (1985). · Zbl 0561.47009
[526] F. Deutsch, ”A survey of metric selections,” Contemp. Math.,18, 49–71 (1983). · Zbl 0518.41030
[527] F. Deutsch and P. Kenderov, ”Continuous selections and approximate selection for set-valued mappings and applications to metric projections,” SIAM J. Math. Anal.,14, No. 1, 185–194 (1983). · Zbl 0518.41031
[528] C. M. Di Bari and P. Vetro, ”Selezioni continue o misurabili,” Rend. Circ. Mat. Palermo,33, No. 3, 461–469 (1984). · Zbl 0559.28006
[529] E. Di Benedetto and R. E. Showalter, ”Implicit degenerate evolution equations and applications,” SIAM J. Math. Anal.,12, No. 5, 731–751 (1981). · Zbl 0477.47037
[530] F. J. Di Guglielmo, ”Differential inclusions with multivalued boundary conditions,” Lecture Notes in Control and Information Sciences, No. 38, 340–348 (1982).
[531] J. I. Diaz, ”Vanishing of solutions for accretive operators in Banach spaces. Applications to certain nonlinear parabolic problems,” Rev. Real Acad. Cienc. Exact. Fiz. Natur. Madrid,74, No. 5, 865–880 (1980). · Zbl 0467.35060
[532] J. I. Diaz and J. Hernandez, ”On the existence of a free boundary for a class of reaction-diffusion systems,” SIAM J. Math. Anal.,15, No. 4, 670–685 (1984). · Zbl 0556.35126
[533] J. I. Diaz and M. A. Herrero, ”Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems,” Proc. R. Soc. Edinburgh Sec. A,89, No. 3–4, 249–258 (1981). · Zbl 0478.35083
[534] G. Dinca, ”A variational method for multivalued operator equations,” Rev. Roumaine Math. Pures Appl.,29, No. 10, 839–849 (1984). · Zbl 0588.47060
[535] Xie-ping Ding ”Fixed point theorems of random set-valued mappings and their applications,” Yingyong Shuxue he Lixue. Appl. Math. Mech.,5, No. 4, 561–575 (1984).
[536] Xie-ping Ding, ”Random common fixed point theorems of set-valued mappings,” Yingyong Shuxue he Lixue (Appl. Math. Mech.),7, No. 1, 3 7–42 (1986).
[537] Dinh Quang Lu’u, ”Representations and regularity of multivalued martingales,” Acta Math. Vietnam.,6, No. 2, 29–40 (1981). · Zbl 0522.60045
[538] Dinh Quang Lu’u, ”Multivalued quasimartingales and uniform amarts,” Acta Math. Vietnam.,7, No. 2, 3–25 (1982). · Zbl 0549.60042
[539] Dinh Quang Lu’u, ”Quelques resultats de convergence des amarts multivoques dans les espaces de Banach,” C. R. Acad. Sci. Paris, Ser. I Math.,300, No. 1, 23–26 (1985). · Zbl 0582.60008
[540] Dinh Quang Luu, ”Quelques resultats de representation des amarts uniformes multivoques dans les espaces de Banach,” C. R. Acad. Sci. Paris, Ser. I Math.,300, No. 2, 63–65 (1985). · Zbl 0582.60056
[541] Do Ba Khang, ”On the generalized complementarity problems in locally convex spaces,” Acta Math. Vietnam.,7, No. 1, 101–106 (1982). · Zbl 0566.90092
[542] Do Ba Khang, ”On the asymptotic regularity of nonexpansive mappings,” Acta Math. Hungar.,48, No. 1–2, 109–115 (1986). · Zbl 0617.47037
[543] Do Hong Tan, ”On probabilistic condensing mappings,” Rev. Roumaine Math. Pures Appl.,26, No. 10, 1305–1317 (1981). · Zbl 0494.47035
[544] Do Hong Tan, ”A fixed point theorem for multivalued quasi-contractions in probabilistic metric spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,12, 43–54 (1982). · Zbl 0524.54034
[545] Do Hong Than, ”On the continuity of fixed points,” Rev. Roumaine Math. Pures Appl.,28, No. 9, 893–904 (1983). · Zbl 0538.54035
[546] Do Hong Tan, ”On continuity of fixed points,” Bull. Pol. Acad. Sci. Math.,31, No. 5–8, 299–301 (1983). · Zbl 0567.47046
[547] Do Hong Than, ”On continuity of fixed points of multivalued collectively condensing mappings,” Indian J. Pure Appl. Math.,15, No. 6, 631–632 (1984). · Zbl 0538.54036
[548] Do Hong Than, ”A common fixed point theorem for multivalued contractive mappings,” Preprint Babes-Bolyai Univ. Fac. Math. Res. Sem., No. 3, 83–88 (1985).
[549] Do Hong Tan and Nguyen Ann Minh, ”Some fixed-point theorems for mappings of contractive type,” Acta Math. Vietnam.,3, No. 1, 24–42 (1978). · Zbl 0426.54028
[550] E.-E. Doberkat, ”Nondeterminism of stochastic automata – an etude in measurable selections,” in: Game Theory and Mathematical Economics (Hagen/Bonn, 1980), North-Holland, Amsterdam (1981), pp. 407–420.
[551] S. Dolecki, ”Role of lower semicontinuity in optimality theory,” in: Game Theory and Mathematical Economics (Hagen/Bonn, 1980), North-Holland, Amsterdam (1981), pp. 265–279.
[552] S. Dolecki and A. Lechicki, ”Semi-continuite superieure forte et filtres adherentes,” C. R. Acad. Sci. Paris, Ser. I Math.,293, No. 3, 219–221 (1981). · Zbl 0486.54003
[553] S. Dolecki and A. Lechicki, ”On structure of upper semicontinuity,” J. Math. Anal. Appl.,88, No. 2, 547–554 (1982). · Zbl 0503.54023
[554] G. Dommisch, ”On the existence of Lipschitz-continuous, differentiable and measurable selections for multifunctions,” Preprint Humboldt-Univ. Berlin, Sekt. Math., No. 91 (1984). · Zbl 0641.28007
[555] A. L. Dontchev, Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, No. 52, Springer, Berlin (1983).
[556] A. L. Dontchev and V. M. Veliov, ”Singular perturbation in Mayer’s problem for linear systems,” SIAM J. Control Optim.,21, No. 4, 566–581 (1983). · Zbl 0519.49002
[557] A. L. Dontchev and V. M. Veliov, ”Singular perturbation in linear differential inclusions – critical case,” in: Parametric Optimization and Approximation, Proc. Internat. Symp. (Oberwolfach, 1983), Birkhauser, Basel (1985), pp. 108–125. · Zbl 0559.34057
[558] D. J. Downing and W. O. Ray, ”Some remarks on set-valued mappings,” Nonlinear Anal.,5, No. 12, 1367–1377 (1981). · Zbl 0501.47021
[559] D. J. Downing and W. O. Ray, ”Renorming and the theory of-accretive set-valued mappings,” Pac. J. Math.,106, No. 1, 73–85 (1983). · Zbl 0468.47041
[560] Ding-Zhu Du, ”Making point-to-set maps and families of point-to-set maps continuous,” Acta Math. Appl. Sinica,8, No. 2, 142–150 (1985). · Zbl 0575.90076
[561] D. Dubois and H. Prade, ”Towards fuzzy differential calculus. Part 1: Integration of fuzzy mappings,” Fuzzy Sets and Systems,8, No. 1, 1–17 (1982). · Zbl 0493.28002
[562] D. Dubois and H. Prade, ”Upper and lower possibilities induced by a multivalued mapping,” in: Fuzzy Information, Knowledge Representation and Decision Analysis (Marseille, 1983), Pergamon Press, Oxford (1984), pp. 147–152. · Zbl 0562.94023
[563] A. Dufetel, ”Interpolation non linéaire dans un éspace de Banach,” C. R. Acad. Sci. Paris, Ser. I Math.,293, No. 6, 331–334 (1981). · Zbl 0469.47041
[564] J. Dugundji and A. Granas, Fixed Point Theory. Vol. I, Panstwowe Wydawnictwo Naukowe (PWN), Warsaw (1982). · Zbl 0483.47038
[565] Du’o’ng Trong Nhan, ”Pair of nonlinear contraction mappings. Common fixed points,” Stud. Univ. Babes-Bolyai Math.,26, No. 1, 34–51 (1981). · Zbl 0496.54039
[566] Z. Dzedzej, ”Fixed point index theory for a class of nonacyclic multivalued maps,” Dissertationes Math. (Rozprawy. Mat.), No. 253 (1985). · Zbl 0592.55001
[567] S. Elaydi, ”Semidynamical systems with non unique global backward extensions,” Funkcial. Ekvac.,26, No. 2, 173–187 (1983). · Zbl 0525.54028
[568] C. M. Elliott, ”On the convergence of a one-step method for the numerical solution of an ordinary differential inclusion,” IMA J. Numer. Anal.,5, No. 1, 3–21 (1985). · Zbl 0598.65052
[569] H. W. Engl and M. Z. Nashed, ”Generalized inverses of random linear operators in Banach spaces,” J. Math. Anal. Appl.,83, No. 2, 582–610 (1981). · Zbl 0485.47001
[570] H. Engler, ”Functional differential equations in Banach spaces: growth and decay of solutions,” J. Reine Angew. Math.,322, 53–73 (1981). · Zbl 0436.34058
[571] H. Engler, ”Invariant sets for functional differential equations in Banach spaces and applications,” Nonlinear Anal.,5, No. 11, 1225–1243 (1981). · Zbl 0478.34051
[572] M. S. Espelie, J. E. Joseph, and M. H. Kwack, ”Applications of the u-closure operator,” Proc. Am. Math. Soc.,83, No. 1, 167–174 (1981). · Zbl 0473.54002
[573] E. Espinosa, A. Plis, and R. Suarez, ”About a nonlinear system inR {\(\times\)} R 2 with one-dimensional control,” Bol. Soc. Mat. Mexicana,24, No. 2, 83–90 (1979). · Zbl 0481.49033
[574] L. C. Evans, ”On solving certain nonlinear partial differential equations by accretive operator methods,” Israel J. Math.,36, No. 3–4, 225–247 (1980). · Zbl 0454.35038
[575] J. Ewert, ”On quasi-continuous and cliquish maps with values in uniform spaces,” Bull. Polish Acad. Sci. Math.,32, No. 1–2, 81–88 (1984). · Zbl 0579.54008
[576] J. Ewert and T. Lipski, ”Quasicontinuous multivalued mappings,” Math. Slovaca,33, No. 1, 69–74 (1983). · Zbl 0531.54019
[577] M. Fabian, ”Theory of Frechet cones,” Casopis Pest. Mat.,107, No. 1, 37–58 (1982). · Zbl 0487.46027
[578] M. Falcone and A. Siconolfi, ”Maximum descent monotone solutions of an ordinary differential equation with a discontinuous right-hand side,” J. Optim. Theory Appl.,39, No. 3, 391–402 (1983). · Zbl 0491.34004
[579] K. Fan, ”Some properties of convex sets related to fixed point theorems,” Math. Ann.,266, No. 4, 519–537 (1984). · Zbl 0515.47029
[580] Fan Xianling, ”A note on generalized degree for generalized gradient mappings,” Chinese Ann. Math. Ser. B,5, No. 4, 615–623 (1984). · Zbl 0554.58019
[581] S. C. Fang and E. L. Peterson, ”General network equilibrium analysis,” Internat. J. Systems Sci.,14, No. 11, 1249–1257 (1983). · Zbl 0523.90040
[582] M. B. Fascella and R. C. Scarparo, ”Sistemas directos e inversos de multifunciones,” Math. Notae,29, 105–116 (1981–1982).
[583] G. Feichtinger and R. F. Hartl, ”On the use of Hamiltonian and maximized Hamiltonian in nondifferentiable control theory,” J. Optim. Theory Appl.,46, No. 4, 493–504 (1985). · Zbl 0548.49008
[584] A. V. Ferreira, ”On Oka’s analytic set-valued functions and spectral theory,” Lect. Notes Math., No. 1165, 122–135 (1985).
[585] A. Fiacca, ”Un teorema di esistenza per equazioni differenziali multivoche,” Riv. Mat. Univ. Parma,11, 79–90 (1985).
[586] Z. Fifer, ”Set-valued Jensen functional equation,” Rev. Roumaine Math. Pures Appl.,31, No. 4, 297–302 (1986). · Zbl 0615.39006
[587] B. Fisher, ”Set-valued mappings on metric spaces,” Fund. Math.,112, No. 2, 141–145 (1981). · Zbl 0456.54009
[588] B. Fisher, ”Common fixed points of mappings and set-valued mappings,” Rostock. Math. Kolloq., No. 18, 69–77 (1981). · Zbl 0479.54025
[589] B. Fisher, ”Fixed points for set-valued mappings on metric spaces,” Bull. Malaysian Math. Soc.,4, No. 2, 95–99 (1981). · Zbl 0479.54026
[590] B. Fisher, ”Fixed points of mappings and set-valued mappings,” J. Univ. Kuwait Sci.,9, No. 2, 175–180 (1982). · Zbl 0488.54038
[591] B. Fisher, ”Common fixed points of set-valued mappings on bounded metric spaces,” Math. Sem. Notes Kobe Univ.,11, No. 2, Part 2, 307–311 (1983). · Zbl 0579.54032
[592] B. Fisher and K. Iseki, ”Fixed points for set-valued mappings on complete and compact metric spaces,” Math. Japon.,28, No. 5, 639–646 (1983). · Zbl 0535.54027
[593] S. Fitzpatrick, ”Metric projections and the differentiability of distance functions,” Bull. Austral. Math. Soc.,22, No. 2, 291–312 (1980). · Zbl 0437.46012
[594] S. Fitzpatrick, ”Differentiation of real-valued functions and continuity of metric projections,” Proc. Am. Math. Soc.,91, No. 4, 544–548 (1984). · Zbl 0604.46050
[595] G. Fournier and M. Martelli, ”Set-valued transformations of the unit sphere,” Lett. Math. Phys.,10, No. 2–3, 125–134 (1985). · Zbl 0595.47040
[596] J. M. Fraile Pelaez, ”Functional perturbations of bounded growth, and evolution equations in Hubert spaces,” Rev. Real Acad. Cienc. Exact. Fiz. Natur. Madrid,75, No. 3, 647–665 (1981). · Zbl 0503.47054
[597] S. Francaviglia, A. Lechicki, and S. Levi, ”Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions,” J. Math. Anal. Appl.,112, No. 2, 347–370 (1985). · Zbl 0587.54003
[598] R. Frankiewicz, A. Gutek, S. Plewik, and J. Roczniak, ”On the theorem on measurable selectors,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,30, No. 1–2, 33–40 (1982). · Zbl 0549.28013
[599] H. Frankowska, ”Inclusions adjointes associées aux trajectoires minimales d’inclusions différentielles,” C. R. Acad. Sci. Paris, Ser. I. Math.,297, No. 8, 461–464 (1983). · Zbl 0532.49024
[600] H. Frankowska, ”The maximum principle for a differential inclusion problem,” Lecture Notes in Control and Information Sciences, No. 62, 517–531 (1984). · Zbl 0549.49013
[601] H. Frankowska, ”Controlabilite locale et proprietes des semigroupes de correspondances,” C. R. Acad. Sci. Paris, Ser. I Math.,299, No. 6, 165–168 (1984).
[602] H. Frankowska, ”Théorème d’application ouverte pour les correspondances,” C. R. Acad. Sci. Paris, Ser. I Math.,302, No. 15, 559–562 (1986). · Zbl 0588.49008
[603] H. Frankowska, ”Le principe de maximum pour une inclusion différentielle avec les contraintes sur les états initiaux et finaux,” C. R. Acad. Sci. Paris, Ser. I. Math.,302, No. 16, 599–602 (1986). · Zbl 0591.49013
[604] H. Frankowska and C. Olech, ”Boundary solutions of differential inclusion,” J. Differential Equations,44, No. 2, 156–165 (1982). · Zbl 0492.34053
[605] M. A. Freedman, ”Existence of strong solutions to singular nonlinear evolution equations,” Pac. J. Math.,120, No. 2, 331–344 (1985). · Zbl 0592.34042
[606] D. H. Fremlin, ”Measurable selections and measure-additive coverings,” Lect. Notes Math., No. 945, 425–428 (1982). · Zbl 0491.28002
[607] L. M. Friedler, R. F. Dickman, Jr., and R. L. Krystock, ”Hyperspaces of H-closed spaces,” Can. J. Math.,32, No. 5, 1072–1079 (1980). · Zbl 0443.54016
[608] Z. Frolik and P. Holicky, ”Selections using orderings (nonseparable case),” Comment. Math. Univ. Carolin.,21, No. 4, 653–661 (1980).
[609] A. Fryszkowski, ”Properties of the set of solutions of orientor equation,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 760–763.
[610] A. Fryszkowski, ”Continuous selections for a class of nonconvex multivalued maps,” Stud. Math.,16, No. 2, 163–174 (1983). · Zbl 0534.28003
[611] A. Fryszkowski, ”The generalization of Cellina’s fixed point theorem,” Stud. Math.,78, No. 2, 213–215 (1984). · Zbl 0558.47043
[612] A. Fryszkowski, ”Existence of solutions of functional-differential inclusion in nonconvex case,” Ann. Polon. Math.,45, No. 2, 121–124 (1985). · Zbl 0579.34049
[613] Furui Hiroshi, ”Remarks on multivalued maximal monotone mappings in reflexive locally convex Hausdorff linear topological spaces,” J. Fac. Ed. Saga Univ.,28, No. 1, 217–221 (1980). · Zbl 0454.47036
[614] N. Furukawa, ”Recurrence set-relations in stochastic multiobjective dynamic decision processes,” Math. Operationsforsch. Statist. Ser. Optim.,13, No. 1, 113–121 (1982). · Zbl 0504.90084
[615] R. E. Gaines and J. K. Peterson, ”Periodic solutions to differential inclusions,” Nonlinear Anal.,5, No. 10, 1109–1131 (1981). · Zbl 0475.34023
[616] R. E. Gaines and J. K. Peterson, ”Degree theoretic methods in optimal control,” J. Math. Anal. Appl.,94, No. 1, 44–77 (1983). · Zbl 0525.49001
[617] L. Gajic, ”Some approximations of compact multivalued maps in paranormed linear spaces,” in: Numerical Methods and Approximation Theory, II (Novi Sad, 1985), Univ. Novi Sad, Novi Sad (1985), pp. 103–108.
[618] G. Garegnani and C. Zanco, ”Fixed points of somehow contractive multivalued mappings,” Rend. Istit. Lombardo Accad. Sci. Lett., Ser. A, No. 114, 138–148 (1980). · Zbl 0502.54048
[619] K. M. Garg, ”On the classification of set-valued functions,” Real Anal. Exchange,9, No. 1, 86–93 (1983–84).
[620] K. M. Garg, ”A general nonseparable theory of functions and multifunctions,” Real Anal. Exchange,9, No. 2, 317–335 (1983–84).
[621] S. Gautier, ”Invariance d’un ferme pour une inclusion differentielle du second ordre,” Publ. Math. Univ. de Pau et des Pays de l’Adour, VII/1–VII15 (1984).
[622] S. Gautier, G. Isac, J.-P. Penot, ”Surjectivité de multiapplication sous des hypothèses de différentiabilité generalisée,” Publ. Math. Univ. de Pau et des Pays de l’Adour, Fac. Sci. Exact., 1/1–1/7 (1981).
[623] S. Gautier, G. Isac, J.-P. Penot, ”Surjectivity of multifunctions under generalized differentiability assumptions,” Bull. Austral. Math. Soc.,28, No. 1, 13–21 (1983). · Zbl 0518.46031
[624] G. G. Gibbon, ”Set mappings of unrestricted order,” Bull. Austral. Math. Soc.,28, No. 2, 199–206 (1983). · Zbl 0536.04005
[625] K. Glashoff and J. Sprekels, ”An application of Glicksberg’s theorem to set-valued integral equations arising in the theory of thermostats,” SIAM J. Math. Anal.,12, No. 3, 477–486 (1981). · Zbl 0472.45004
[626] K. Glashoff and J. Sprekels, ”The regulation of temperature by thermostats and set-valued integral equations,” J. Integral Equations,4, No. 2, 95–112 (1982). · Zbl 0507.45010
[627] B. Glodde, ”On Filippov’s concept, variational inequalities, ordinary and generalized solutions of the contingent equation,” in: Proc. Conf. Numerical Treatment of Ordinary Differential Equations (Berlin, 1980), Seminarberichte, No. 32, Humboldt Univ., Berlin (1980), pp. 7–13. · Zbl 0483.34012
[628] B. Glodde and H.-D. Niepage, ”Einführung in die mengenwertige Analysis und die Theorie der Kontingentgleichungen,” Seminarberichte, No. 41, Humboldt Univ., Sekt. Math., Berlin (1981). · Zbl 0481.49032
[629] A. Gmira and L. Veron, ”Asymptotic behaviour of the solution of a semilinear parabolic equation,” Monatsh. Math.,94, No. 4, 299–311 (1982). · Zbl 0502.35014
[630] L. Gobbo, ”On the asymptotic behavior of the resolvent of the inverse of anm-accretive operator in a Banach space,” Rend. Sem. Mat. Univ. Politec. Torino,42, No. 2, 47–64 (1984). · Zbl 0599.47083
[631] G. Godini, ”The modulus of continuity of the set-valued metric projection,” Acta Math. Acad. Sci. Hung.,32, No. 4, 355–372 (1981). · Zbl 0495.41024
[632] G. Godini, ”A generalization of set-valued metric projections,” Anal. Numer. Theor. Approx.,12, No. 1, 25–44 (1983). · Zbl 0528.41022
[633] J. T. Goodykoontz, Jr., ”Some retractions and deformation retractions on 2x andC(x),” Topology Appl.,21, No. 2, 121–133 (1985). · Zbl 0568.54013
[634] J. T. Goodykoontz, Jr. and S. B. Nadler, Jr., ”Fixed point sets of continuum-valued mappings,” Fund. Math.,122, No. 1, 85–103 (1984). · Zbl 0552.54023
[635] L. Gorniewicz, ”On the Lefschetz coincidence theorem,” Lect. Notes Math., No. 886, 116–139 (1981). · Zbl 0477.55004
[636] L. Gorniewicz, ”On the solution sets of differential inclusions,” J. Math. Anal. Appl.,113, No. 1, 235–244 (1986). · Zbl 0609.34012
[637] L. Gorniewicz and A. Granas, ”Some general theorems in coincidence theory. I,” J. Math. Pures Appl.,60, No. 4, 361–373 (1981). · Zbl 0482.55002
[638] L. Gorniewicz and Z. Kucharski, ”Coincidence ofk-set contraction pairs,” J. Math. Anal. Appl.,107, No. 1, 1–15 (1985). · Zbl 0578.55002
[639] P. Govindarajulu and D. V. Pai, ”On solar properties of sets and radial continuity of set-valuedf-projections,” Indian J. Pure Appl. Math.,17, No. 3, 360–366 (1986). · Zbl 0601.41037
[640] S. Graf, ”Selected results on measurable selections,” Rend. Circ. Mat. Palermo,31, No. 2, Suppl., 87–122 (1982). · Zbl 0509.28007
[641] S. Graf and R. D. Mauldin, ”Measurable one-to-one selections and transition kernels,” Am. J. Math.,107, No. 2, 407–425 (1985). · Zbl 0573.28013
[642] A. Granas and Fon-Che-Liu, ”Theorémès du minimax,” C. R. Acad. Sci. Paris, Ser. I. Math.,298, No. 14, 329–332 (1984). · Zbl 0586.49003
[643] K. A. Grasse, ”Some remarks on extremal solutions of multivalued differential equations,” J. Optim. Theory Appl.,40, No. 2, 221–235 (1983). · Zbl 0488.49006
[644] R. Grimmer and M. Zeman, ”Nonlinear Volterra integrodifferential equations in a Banach space,” Israel J. Math.,42, No. 1–2, 162–176 (1982). · Zbl 0498.45004
[645] G. Gripenberg, ”Volterra integrodifferential equations with accretive nonlinearity,” J. Differential Equations,60, No. 1, 57–79 (1985). · Zbl 0575.45013
[646] M. D. Guay, K. L. Singh, and J. H. M. Whitfield, ”Common fixed points for set-valued mappings,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,30, No. 11–12, 545–551 (1982). · Zbl 0538.54039
[647] C. P. Gupta, ”Leray-Schauder type continuation theorems for some nonlinear equations in Banach spaces,” Nonlinear Anal.,7, No. 7, 729–737 (1983). · Zbl 0518.47037
[648] C. P. Gupta, ”Some theorems on the sum of nonlinear mappings of monotone type in Banach spaces,” J. Math. Anal. Appl.,91, No. 1, 38–45 (1983). · Zbl 0543.47047
[649] Ch. P. Gupta, ”Compact convergence topology for multivalued functions,” Proc. Nat. Acad. Sci. India,A53, No. 2, 164–167 (1983). · Zbl 0532.54013
[650] S. Gutman, ”Compact perturbations ofm-accretive operators in general Banach spaces,” SIAM J. Math. Anal.,13, No. 5, 789–800 (1982). · Zbl 0499.47046
[651] S. Gutman, ”Evolutions governed bym-accretive plus compact operators,” Nonlinear Anal.,7, No. 7, 707–715 (1983). · Zbl 0518.34055
[652] R. Guzzardi, ”Positive solutions of operator equations in the nondifferentiable case,” Contemp. Math.,21, 137–146 (1983). · Zbl 0543.47051
[653] R. Guzzardi, ”Nonlinear eigenvalue problems and bifurcations for differentiable multivalued maps,” Ann. Polon. Math.,45, No. 3, 283–295 (1985). · Zbl 0587.47055
[654] J. Gwinner, ”On fixed points and variational inequalities – a circular tour,” Nonlinear Anal.,5, No. 5, 565–583 (1981). · Zbl 0461.47037
[655] Chung-Wei Ha, ”Extensions of two fixed point theorems of Ky Fan,” Math. Z.,190, No. 1, 13–16 (1985). · Zbl 0551.47024
[656] Ha Le Anh and Dinh Quang Lu’u, ”Measurable relations with closed ball values in Banach spaces,” Acta Math. Vietnam,6, No. 2, 6–12 (1981). · Zbl 0522.60044
[657] G. Haddad, ”Monotone trajectories of differential inclusions and functional differential inclusions with memory,” Israel J. Math.,39, No. 1–2, 83–100 (1981). · Zbl 0462.34048
[658] G. Haddad, ”Monotone viable trajectories for functional differential inclusions,” J. Differential Equations,42, No. 1, 1–24 (1981). · Zbl 0472.34043
[659] G. Haddad, ”Topological properties of the sets of solutions for functional differential inclusions,” Nonlinear Anal.,5, No. 12, 1349–1366 (1981). · Zbl 0496.34041
[660] G. Haddad and J. M. Lasry, ”Periodic solutions of functional differential inclusions and fixed points of{\(\sigma\)}-selectionable correspondences,” J. Math. Anal. Appl.,96, No. 2, 295–312 (1983). · Zbl 0539.34031
[661] O. Hadzic, ”A random fixed point theorem for multivalued mappings of ciric’s type,” Mat. Vesn.,3, No. 4, 397–401 (1979).
[662] O. Hadzic, ”Fixed point theorems for multivalued mappings in random normed spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak.,9, 29–36 (1979).
[663] O. Hadzic, ”A coincidence theorem for multivalued mappings in metric spaces,” Stud. Univ. Babes-Bolyai Math.,26, No. 4, 65–67 (1981).
[664] O. Hadzic, ”A generalization of Kakutani’s fixed point theorem in paranormed spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,11, 19–28 (1981). · Zbl 0505.47040
[665] O. Hadzic, ”On mulivalued mappings in paranormed spaces,” Comment. Math. Univ. Carolin.,22, No. 1, 129–136 (1981).
[666] O. Hadzic, ”Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces,” Nonlinear Anal.,5, No. 9, 1009–1019 (1981). · Zbl 0473.47046
[667] O. Hadzic, ”On almost continuous selection property,” Math. Sem. Notes, Kobe Univ.,10, No. 1, 41–47 (1982).
[668] O. Hadzic, ”On Kakutani’s fixed point theorem in topological vector space,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,30, No. 3–4, 141–144 (1982). · Zbl 0499.47036
[669] O. Hadzic, ”Fixed point theorems in not necessarily locally convex topological vector spaces,” Lect. Notes Math., No. 948, 118–130 (1982).
[670] O. Hadzic, ”On equilibrium point in topological vector spaces,” Comment. Math. Univ. Carolin.,23, No. 4, 727–738 (1982). · Zbl 0507.47039
[671] O. Hadzic, ”A Leray-Schauder principle for multivalued mappings in topological vector spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,12, 19–29 (1982).
[672] O. Hadzic, ”Fixed point theorems for multivalued mappings in uniform spaces and its applications to PM-spaces,” An. Univ. Timisoara Ser. Stiint. Mat.,21, No. 1–2, 45–57 (1983).
[673] O. Hadzic, ”Some applications of a fixed point theorem for multivalued mappings in topological vector spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,13, 15–29 (1983).
[674] O. Hadzic, Fixed Point Theory in Topological Vector Spaces, Novi Sad University, Novi Sad (1984).
[675] O. Hadzic, ”Theorems on the fixed point for multivalued mappings in topological vector spaces,” Rend. Istit. Mat. Univ. Trieste,17, No. 1–2, 1–11 (1985).
[676] O. Hadzic, ”A coincidence theorem in topological vector spaces,” Bull. Austral. Math. Soc.,33, No. 3, 373–382 (1986). · Zbl 0581.47046
[677] O. Hadzic and R. Dedeic, ”A generalization of contraction principle for multivalued mappings in probabilistic metric spaces,” in: III Conference on Applied Mathematics (Novi Sad, 1982), Univ. Novi Sad, Novi Sad (1982), pp. 13–22.
[678] O. Hadzic and L. Gajic, ”A fixed point theorem for multivalued mappings in topologocal vector spaces,” Fund. Math.,109, No. 2, 163–167 (1980).
[679] O. Hadzic and L. Gajic, ”Some fixed point theorems for multivalued mappings in topological vector spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak.,10, 49–54 (1980).
[680] O. Hadzic and L. Gajic, ”A theorem on almost continuous selection property and its applications,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,11. No. 29–38 (1981).
[681] O. Hadzic and L. Gajic, ”Some applications of fixed Foint theorems for multivalued mappings on mimimax problems in topological vector spaces,” Math. Operationsforsch. Statist. Ser. Optim.,15, No. 2, 193–201 (1984). · Zbl 0547.52001
[682] S. Hahn, ”Fixpunktsatze fur limeskompakte mengenwertige Abbildungen in nicht notwendig lokalkonvexen topologischen Vektorraumen,” Comment. Math. Univ. Carolin.,27, No. 1, 189–204 (1986). · Zbl 0601.47048
[683] R. W. Hansell, ”Hereditarily-additive families in descriptive set theory and Borel measurable multimaps,” Trans. Am. Math. Soc.,278, No. 2, 725–749 (1983). · Zbl 0521.28004
[684] R. W. Hansell, ”A measurable selection and representation theorem in nonseparable spaces,” Lect. Notes Math., No. 1089, 86–94 (1984).
[685] R. W. Hansell, J. E. Jayne, and P. S. Kenderov, ”Semicontinuite inferieure generique d’une multiapplication,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 12, 497–500 (1983). · Zbl 0525.54012
[686] R. W. Hansell, J. E. Jayne, I. Labuda, and C. A. Rogers, ”Boundaries of and selectors for upper semi-continuous multi-valued maps,” Math. Z.,189, No. 3, 297–318 (1985). · Zbl 0544.54016
[687] R. W. Hansell, J. E. Jayne, and C. A. Rogers, ”K-analytic sets,” Mathematika,30, No. 2, 189–221 (1983). · Zbl 0524.54028
[688] R. W. Hansell, J. E. Jayne, and M. Talagrand, ”First class selectors for weakly upper semi-continuous multivalued maps in Banach spaces,” J. Reine Angew. Math., No. 361, 201–220 (1985). · Zbl 0573.54012
[689] A. Haraux, ”Forced oscillations for some nonlinear, weakly dissipative wave equations,” J. Differential Equations,44, No. 3, 440–451 (1982). · Zbl 0458.35063
[690] A. Haraux, ”Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations,” Nonlinear Anal.,6, No. 11, 1207–1220 (1982). · Zbl 0505.35012
[691] A. Haraux, ”Almost periodic forcing for a wave equation with a nonlinear, local damping term,” Proc. R. Soc. Edinburgh,94A. No. 3–4, 195–212 (1983). · Zbl 0589.35076
[692] A. Haraux, ”Generalized almost periodic solutions and ergodic properties of quasiautonomous dissipative systems,” J. Differential Equations,48, No. 2, 269–279 (1983). · Zbl 0476.34039
[693] A. Haraux, ”Stabilization of trajectories for some weakly damped hyperbolic equations,” J. Differential Equations,59, No. 2, 145–154 (1985). · Zbl 0535.35006
[694] A. Hascak, ”Fixed point theorems for multivalued mappings,” Czechoslovak Math. J.,35, No. 4, 533–542 (1985).
[695] K. Hashimoto and S. Oharu, ”Gel’fand integrals and generalized derivatives of vector measures,” Hiroshima Math. J.,13, No. 2, 301–326 (1983). · Zbl 0539.46034
[696] M. Hata, ”On some properties of set-dynamical systems,” Proc. Jpn. Acad. Ser. A Math. Sci.,61, No. 4, 99–102 (1985). · Zbl 0573.54033
[697] S. Heilpern, ”Fuzzy mappings and fixed point theorem,” J. Math. Anal. Appl.,83, No. 2, 566–569 (1981). · Zbl 0486.54006
[698] W. Hejmo and J. Kloch, ”On the time-optimal problem of positional control with discontinuous resistances of motion,” RAIRO Automat.,18, No. 3, 329–341 (1984). · Zbl 0555.49004
[699] Ch. Hess, ”Loi de probabilite des ensembles aleatoires a valeurs fermees dans un espace metrique separable,” Sci. Paris, Ser. I Math.,296. No. 21, 883–886 (1983).
[700] F. Hiai, ”Convergence of conditional expectations and strong laws of large numbers for multivalued random variables,” Trans. Am. Math. Soc.,291, No. 2, 613–627 (1985). · Zbl 0583.60007
[701] W. Hildenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press (1974). · Zbl 0351.90012
[702] C. J. Himmelberg, T. Parthasarathy, and F. S. Van Vleck, ”On measurable relations,” Fund. Math.,111. No. 2, 161–167 (1981). · Zbl 0465.28002
[703] C. J. Himmelberg and F. S. Vin Vleck, ”Existence of solutions for generalized differential equations with unbounded right-hand side,” J. Differential Equations,61, No. 3, 295–320 (1986). · Zbl 0582.34002
[704] C. J. Himmelberg, F. S. Van Vleck, and K. Prikry, ”The Hausdorff metric and measurable selections,” Topology Appl.,20, No. 2, 121–133 (1985). · Zbl 0586.28009
[705] N. Hirano, ”Local existence theorems for nonlinear differential equations,” SIAM J. Math. Anal.,14, No. 1, 117–125 (1983). · Zbl 0533.34004
[706] N. Hirano, ”On the ergodicity of solutions of nonlinear evolution equations with periodic forcings,” Proc. Jpn. Acad.,A60. No. 7, 237–238 (1984). · Zbl 0571.47041
[707] N. Hirano, ”On homotopy invariance of the solvability of nonlinear variational inequalities,” Kodai Math. J.,8, No. 3, 277–284 (1985).
[708] N. Hirano, ”Abstract nonlinear Volterra equations with positive kernels,” SIAM J. Math. Anal.,17, No. 2, 403–414 (1986). · Zbl 0596.45021
[709] J.-B. Hiriart-Urruty, ”Images of connected sets by semicontinuous multifunctioni,” J. Math. Anal. Appl.,111, No. 2, 407–422 (1985). · Zbl 0578.54013
[710] A. Hoffmann, ”Weak convex functions, multifunctions and optimization,” in: 27 Internat. Wiss. Kolloq. (Ilmenau, 1982), Heft 5, Vortragsreihe B1, B2, Technische Hochschule, Ilmenau, pp. 33–36.
[711] A. Hoffmann, ”Properties of a multiplier-multifunction. I,” Wiss. Z. Tech. Hochsch. Ilmenau,29, No. 2, 39–46 (1983). · Zbl 0523.49013
[712] C. Horvath, ”Points fixes et coincidences pour les applications multivoques sans convexité,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 9, 403–406 (1983). · Zbl 0527.54042
[713] C. Horvath, ”Measure of noncompactness and multivalued mappings in complete metric topological vector spaces,” J. Math. Anal. Appl.,108, No. 2, 403–408 (1985). · Zbl 0587.54063
[714] M. Hosoya, ”On decay estimates from below for solutions of homogeneous nonlinear evolution equations,” J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.,32, No. 3, 429–441 (1985). · Zbl 0595.34063
[715] Shui-Hung Hou, ”On property (Q) and other semicontinuity properties of multifunctions,” Pac. J. Math.,103, No. 1, 39–56 (1982). · Zbl 0451.54015
[716] Shui-Hung Hou, ”Controllability and feedback systems,” Nonlinear Anal.,9, No. 12, 1487–1493 (1985). · Zbl 0621.93007
[717] Thakyin Hu and H. Rosen, ”Locally contractive and expansive mappings,” Proc. Am. Math. Soc.,86, No. 4, 656–662 (1982). · Zbl 0519.54030
[718] H. Hudzik, J. Musielak, and R. Urbanski, ”A totally nonatomic set-valued measure,” Comment. Math. Prace Mat.,24, No. 1, 65–67 (1984). · Zbl 0564.28003
[719] D. S. Hulbert and S. Reich, ”Asymptotic behavior of solutions to nonlinear Volterra integral equations,” J. Math. Anal. Appl.,104, No. 1, 155–172 (1984). · Zbl 0589.45006
[720] A. Idzik, ”Theorems on selectors of measurable multifunctions,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,29, No. 11–12, 597–603 (1981). · Zbl 0498.28006
[721] A. Idzik, ”Theorems on selectors in topological spaces. I,” in: Trans. Ninth Prague Conference on Information Theory, Statistical Decision Functions, and Random Processes (Prague, 1982), Vol. A, Czechoslovak Acad. Sci., Prague (1983), pp. 287–292.
[722] S. Invernizzi, ”A sufficient condition for the solvability of T (x),” in: Proceedings of the Meeting on General Topology (Univ. Trieste, Trieste, 1978), Univ. degli Studi Trieste, Trieste (1981), p. 147.
[723] S. Invernizzi and F. Zanolin, ”Una condizione sufficiente per la risolubilita dell’equazione T(x) (x),” Rend. Istit. Mat. Univ. Trieste,11, No. 1–2, 9–15 (1979). · Zbl 0398.47036
[724] A. D. Ioffe, ”One-to-one Caratheodory representation theorem for multifunctions with uncountable values,” Fund. Math.,109, No. 1, 19–29 (1980). · Zbl 0368.28002
[725] A. D. Ioffe, ”Nonsmooth analysis: differential calculus of nondifferentiable mappings,” Trans. Am. Math. Soc.,266, No. 1, 1–56 (1981). · Zbl 0651.58007
[726] A. D. Ioffe, ”Single-valued representation of set-valued mappings. II. Application to differential inclusions,” SIAM J. Control Optim.,21, No. 4, 641–651 (1983). · Zbl 0539.49009
[727] A. D. Ioffe, ”Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps,” Nonlinear Anal.,8, No. 5, 517–539 (1984). · Zbl 0542.46023
[728] I. R. Ionescu, I. Rosca, and M. Sofonea, ”A variational method for nonlinear multivalued operators,” Nonlinear Anal.,9, No. 2, 259–273 (1985). · Zbl 0545.47032
[729] H. Ishii, ”Remarks on evolution equations with almost periodic forcing terms,” Bull. Fac. Sci. Eng. Chuo Univ.,23, 55–71 (1980). · Zbl 0516.34043
[730] V. I. Istratescu, Fixed Point Theory. An Introduction, D. Reidel, Dordrecht (1981).
[731] M. M. Israel, Jr., and S. Reich, ”Asymptotic behavior of solutions of a nonlinear evolution equation,” J. Math. Anal. Appl.,83, No. 1, 43–53 (1981). · Zbl 0508.47060
[732] T. Janiak and E. Luczak-Kumorek, ”On the fundamental theory of functional-differential relations with discontinuous right side,” Discuss. Math.,7, 163–178 (1985). · Zbl 0641.34062
[733] J. Jarnik, ”Multivalued mappings and Filippov’s operation,” Czechoslovak Math. J.,31, No. 2, 275–288 (1981). · Zbl 0473.34018
[734] J. Jarnik, ”Generalized Filippov operator and multivalued mappings,” in: Differential Equations and Applications, II, Tech. Univ., Ruse (1982), pp. 860–864.
[735] J. Jarnik and J. Kurweil, ”Sets of solutions of differential relations,” Czechoslovak Math. J.,31, No. 4, 554–568 (1981). · Zbl 0487.34011
[736] J. Jarnik and J. Kurweil, ”Integral of multivalued mappings and its connection with differential relations,” Casopis Pest. Mat.,108, No. 1, 8–28 (1983).
[737] J. E. Jayne and C. A. Rogers, ”Fonctions multivoques semi-continues superieurement,” C. R. Acad. Sci. Paris, Ser. I Math.,293, No. 8, 429–430 (1981). · Zbl 0476.54015
[738] J. E. Jayne and C. A. Rogers, ”Upper semi-continuous set-valued functions,” Acta Math.,149, No. 1–2, 87–125 (1982). · Zbl 0523.54013
[739] J. E. Jayne and C. A. Rogers, ”Borel selectors for upper semicontinuous multivalued functions,” J. Funct. Anal.,56, No. 3, 279–299 (1984). · Zbl 0581.28007
[740] J. E. Jayne and C. A. Rogers, ”Selections boreliennes de multiapplications semicontinues superieurement,” C. R. Acad. Sci. Paris, Ser. I Math.,299, No. 5, 125–128 (1984).
[741] J. E. Jayne and C. A. Rogers, ”Borel selectors for upper semicontinuous set-valued maps,” Acta Math.,155, No. 1–2, 41–79 (1985). · Zbl 0588.54020
[742] Jia He Jiang, ”Fixed point theorems for multivalued mappings in locally convex spaces,” Acta Math. Sinica,25, No. 3, 365–373 (1982). · Zbl 0569.47051
[743] H. Th. Jongen, P. Jonker, and F. Twilt, ”On one-parameter-families of sets defined by (in)equality constraints,” Nieuw. Arch. wisk.,30, No. 3, 307–322 (1982). · Zbl 0518.58032
[744] J. E. Joseph, ”Regularity, normality and weak continuity for multifunctions,” Math. Japon.,26, No. 6, 647–651 (1981). · Zbl 0487.54019
[745] O. Haleva, ”A note on fixed points for fuzzy mappings,” Fuzzy Sets and Systems, 15, No. 1, 99–100 (1985). · Zbl 0564.47028
[746] T. Kaminogo, ”Spectral approach to boundary value problems for functional differential inclusions,” Funkcial. Ekvac.,27, No. 2, 147–156 (1984). · Zbl 0576.34060
[747] A. Kaminski, ”Remarks on multivalued convergences,” in: General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981), Heldermann, Berlin (1983), pp. 418–422.
[748] H. Kaneko, ”Banach type fixed point theorem for multivalued mappings,” Kobe J. Math.,1, No. 2, 163–165 (1984). · Zbl 0567.54031
[749] H. Kaneko, ”Single-valued and multivaluesf contractions,” Boll. Unione. Mat. Ital.,A4, No. 1, 29–33 (1985) · Zbl 0568.54031
[750] H. Kaneko, ”Remarks on a fixed point theorem of Massa,” Ann. Soc. Sci. Bruxelles Ser. I,99, No. 1, 19–23 (1985). · Zbl 0611.54030
[751] H. Karkar, ”Modelization globale des grandes systèmes. Composition des systèmes différentiels de commande,” in: Appl. Modell. and Simul., Proc, IASTED, Internat. Symp. (Paris, 1982), Anaheim, pp. 21–25.
[752] A. G. Kartsatos, ”Surjectivity results for compact perturbations ofM-accretive operators,” J. Math. Anal. Appl.,78, No. 1, 1–16 (1980). · Zbl 0447.47041
[753] B. Haskosz and S. Lojasiewicz, Jr., ”A maximum principle for generalized control systems,” Nonlinear Anal.,9, No. 2, 109–130 (1985). · Zbl 0557.49012
[754] A. Kasperski, ”On the convergence of the sequence of optimal strategies for a certain functional equation of the dynamic programming,” Demonstratio Math.,14, No. 3, 605–619 (1981). · Zbl 0489.90079
[755] G. Kassay, ”The proximal points algorithm for reflexive Banach spaces,” Stud. Univ. Babes-Bolyai Math.,30, 9–17 (1985). · Zbl 0649.47040
[756] N. Kato, K. Kobayasi, and I. Miyadera, ”On the asymptotic behavior of solutions of evolution equations associated with nonlinear Volterra equations,” Nonlinear Anal.,9, No. 5, 419–430 (1985). · Zbl 0581.47053
[757] B. Kawohl, ”On nonlinear parabolic equations with abruptly changing nonlinear boundary conditions,” Nonlinear Anal.,5, No. 10, 1141–1153 (1981). · Zbl 0468.35050
[758] B. Kawohl, ”A singular perturbation approach to nonlinear elliptic boundary value problems,” Lect. Notes Math., No. 942, 65–71 (1982).
[759] B. Kawohl and R. Ruhl, ”Periodic solutions of nonlinear heat equations under discontinuous boundary conditions,” Lect. Notes Math., No. 1017, 322–327 (1983).
[760] P. Kenderov, ”Dense strong continuity of pointwise continuous mappings,” Pac. J. Math.,89, No. 1, 111–130 (1980). · Zbl 0458.54011
[761] P. Kenderov, ”Continuitylike properties of set-valued mappings,” Serdica,9, No. 2, 149–160 (1983). · Zbl 0539.54010
[762] N. Kenmochi and M. Otani, ”Instability of periodic solutions of some evolution equations governed by time-dependent subdifferential operators,” Proc. Jpn. Acad.,A61, No. 1, 4–7 (1985). · Zbl 0562.34028
[763] M. S. Khan, ”Common fixed point theorems for multivalued mappings,” Pac. J. Math.,95, No. 2, 337–347 (1981). · Zbl 0419.54030
[764] M. S. Khan, M. D. Khan, and I. Kubiaczyk, ”Some common fixed point theorems for multivalued mappings,” Demonstratio Math.,17, No. 4, 997–1002 (1984). · Zbl 0579.54035
[765] Phan Quoc Khanh, ”An induction theorem and general open mapping theorems,” J. Math. Anal. Appl.,118, No. 2, 519–534 (1986). · Zbl 0644.46002
[766] T. Kiffe, ”A Volterra integral equation and multiple valued functions,” J. Integral Equations,3, No. 2, 93–108 (1981). · Zbl 0479.45004
[767] W. A. Kirk, ”Nonexpansive mappings in product spaces, set-valued mappings andk-uniform rotundity,” in: Nonlinear Functional Analysis and Its Applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., No. 45, Part 2, Am. Math. Soc., Providence, R.I. (1986), pp. 51–64.
[768] N. K. Kirov, ”Differentiability of convex mappings and generalized monotone mappings,” C. R. Acad. Bulgare Sci.,34, No. 11, 1473–1475 (1981). · Zbl 0492.46037
[769] N. K. Kirov, ”Generalized monotone mappings and differentiability of vector-valued convex mappings,” Serdica,9, No. 3, 263–274 (1983). · Zbl 0537.47028
[770] N. K. Kirov, ”Generic Fréchet differentiability of convex operators,” Proc. Am. Math. Soc.,94, No. 1, 97–102 (1985). · Zbl 0572.46042
[771] M. Kisielewicz, ”On the trajectories of generalized functional-differential control systems,” in: 24 Internat. wiss. Kolloq. (Ilmenau, 1979), Heft 4, Vortragsreihe B1, Technische Hochschule, Ilmenau, pp. 141–144.
[772] M. Kisielewicz, ”Existence theorem for functional-differential relations,” Zest. Nauk. WSI Zielonej Gorze, No. 61, 53–60 (1979).
[773] M. Kisielewicz, ”Description of a class of multivalued differential equations with almost weakly stable trivial solution,” Ann. Polon. Math.,38, No. 2, 201–205 (1980). · Zbl 0448.34010
[774] M. Kisielewicz, ”Existence theorem for generalized functional-differential equations of neutral type,” J. Math. Anal. Appl.,78, No. 1, 173–182 (1980). · Zbl 0461.34009
[775] M. Kisielewicz, ”On the trajectories of generalized functional-differential systems of neutral type,” J. Optim. Theory Appl.,33, No. 2, 255–266 (1981). · Zbl 0421.49016
[776] M. Kisielewicz, ”Continuous dependence of solution sets for generalized differential equations of neutral type,” Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend.,8, No. 1–2, 191–195 (1980–81).
[777] M. Kisielewicz, ”Multivalued differential equations in separable Banach spaces,” J. Optim. Theory Appl.,37, No. 2, 231–249 (1982). · Zbl 0458.34008
[778] M. Kisielewicz, ”Compactness and upper semicontinuity of solution set of generalized differential equation in separable Banach space,” Demonstratio Matb.,15, No. 3, 753–761 (1982). · Zbl 0524.34063
[779] M. Kisielewicz, ”Generalized functional-differential equations of neutral type,” Ann. Polon. Math.,42, 139–148 (1983). · Zbl 0543.34052
[780] M. Kisielewicz, ”Approximating control problems for dynamical systems described by functional-differential equations of neutral type,” Discuss. Math.,6, 115–133 (1983). · Zbl 0593.34069
[781] M. Kisielewicz and L. Rybinski, ”Generalized fixed point theorems,” Demonstratio Math.,16, No. 4, 1037–1041 (1983). · Zbl 0562.47044
[782] D. Klatte, ”A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities,” Math. Programning Study,21, 139–149 (1984). · Zbl 0562.90088
[783] H. -A. Klei, ”Compacite faible de parties decomposables de LE 1,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 23, 965–967 (1983). · Zbl 0532.46017
[784] I. Kobayashi, ”Surjectivity for a class of dissipative operators,” Proc. Jpn. Acad.,A59, No. 2, 44–46 (1983). · Zbl 0542.47043
[785] V. Komornik, ”Minimax theorem for upper semicontinuous functions,” Acta Math. Acad. Sci. Hungar.,40, No. 1–2, 159–163 (1982). · Zbl 0505.49007
[786] G. Koumoullis and K. Prikry, ”The Ramsey property and measurable selections,” J. London Math. Soc.,28, No. 2, 203–210 (1983). · Zbl 0526.28009
[787] I. Kovacevic, ”On multifunctions and paracompactness,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,12, 61–68 (1982). · Zbl 0538.54009
[788] P. Kowalski and J. Pochcial, ”On convergence of sequence of point-to-set maps,” Demonstratio Math.,15, No. 1, 73–86 (1982). · Zbl 0531.54020
[789] P. Kowalski and J. Pochcial, ”Remarks on convergence of sequences of point-to-set maps,” Demonstratio Math.,16, No. 2, 421–427 (1983). · Zbl 0531.54021
[790] A. Koyama, ”Various compact multiretracts and shape theory,” Tsukuba J. Math.,6, No. 2, 319–332 (1982). · Zbl 0536.54010
[791] T. Koyama, ”On a product formula for a class of nonlinear evolution equations,” Hiroshima Math. J.,14, No. 2, 283–298 (1984). · Zbl 0558.47048
[792] A. Kozlowski, ”Some properties of multiple-valued functions and mappings of several variables. I; II; III,” Bull. Soc. Sci. Lett. Lodz,30, No. 5, 1–11; No. 6, 1–8; No. 7, 1–10 (1980). · Zbl 0457.32012
[793] E. Krauss, ”On the maximality of the sum of monotone operators,” Math. Nachr.,101, 199–206 (1981). · Zbl 0485.47036
[794] E. Krauss, ”A necessary and sufficient maximality crierion for the sum of maximal monotone operators,” in: Seminarberichte, No. 39, Humboldt Univ., Berlin (1982), pp. 137–147. · Zbl 0494.47031
[795] E. Krauss, ”A degree for operators of monotone type,” Math. Nachr.,114, 53–62 (1983). · Zbl 0559.47043
[796] E. Krauss, ”On the general form of maximal monotone operators – the finite-dimensional case,” Preprint Ernst-Moritz-Arndt Univ. Greifswald, Math., No. 10, 49–52 (1983).
[797] E. Krauss, ”On the range of maximal monotone operators in nonreflexive spaces,” Math. Nachr.,120, 195–201 (1985). · Zbl 0575.47035
[798] E. Krauss, ”Maximal monotone operators and saddle functions. I,” Preprint Akad. Wiss. DDR, Inst. Math., No. 12 (1985).
[799] E. Krauss, ”A representation of maximal monotone operators by saddle functions,” Rev. Roumaine Math. Pures Appl.,30, No. 10, 823–837 (1985). · Zbl 0598.47059
[800] E. Krauss and D. Tiba, ”Regularization of saddle functions and the Yosida approximation of monotone operators,” Preprint Akad. Wiss. DDR, Inst. Math., No. 13 (1985). · Zbl 0624.47054
[801] D. Kravvaritis, ”Existence theorems for nonlinear random equations and inequalities,” J. Math. Anal. Appl.,88, No. 1, 61–75 (1982). · Zbl 0491.60065
[802] P. Krbec, ”On nonparasit generalized solutions of differential relations,” Casopis Pest. Mat.,106, No. 4, 368–372 (1981). · Zbl 0487.34001
[803] P. Krbec, ”Parasitic and nonparasitic solutions of differential equations and stability,” in: Qualitative Theory of Differential Equations, Vol. II, Amsterdam (1981), pp. 621–640. · Zbl 0484.34007
[804] P. Kree, ”Généralisation de l’équation de Fokker-Planck aux équations différentielles stochastiques multivoques,” C. R. Acad. Sci. Paris, Ser. I Math.,294, No. 12, 421–424 (1982). · Zbl 0484.60055
[805] T. Kubiak, ”Fixed point theorems for contractive type multivalued mappings,” Math. Japon.,30, No. 1, 89–101 (1985). · Zbl 0567.54030
[806] T. Kubiak, ”Two coincidence theorems for contractive type multivalued mappings,” Stud. Univ. BabeÇ-Bolyai Math.,30, 65–68 (1985). · Zbl 0579.54037
[807] A. Kucia, ”On the existence of Caratheodory selectors,” Bull. Polish Acad. Sci. Math.,32, No. 3–4, 233–241 (1984). · Zbl 0562.28004
[808] A. Kucia and A. Nowak, ”Carathéodory type selectors in a Hilbert space,” Ann. Math. Silesianae,14, 47–52 (1986). · Zbl 0593.54018
[809] B. Kummer, ”Generalized equations: solvability and regularity,” Math. Programming Study,21, 199–212 (1984). · Zbl 0568.49008
[810] B. Kummer, ”Stability of generalized equations and Kuhn-Tucker points of perturbed convex programs,” Lecture Notes on Control and Information Sciences, No. 59, 213–218 (1984). · Zbl 0562.90072
[811] A. B. Kurzhanskij, ”Evolution equations for problems of control and estimation of uncertain systems,” Proc. Internat. Congress of Mathematicians (Warsaw, 1983), Vol. 2, North-Holland, Amsterdam (1984), pp. 1381–1402.
[812] J. Kurzweil, ”Nonautonomous differential relations and their connections with differential equations the right hand side of which is discontinuous with respect to space variables,” in: Differential Equations and Applications, Part I, Tech. Univ., Ruse (1982), pp. 398–404.
[813] J. Kurzweil and J. Jarnik, ”On regularization of right hand sides of differential relations,” Proc. R. Soc. Edinburgh Sec. A,97, 151–159 (1984). · Zbl 0561.34044
[814] P. Laborde, ”Sur un probleme d’evolution non monotone,” C. R. Acad. Sci. Paris, Ser. I Math.,292, No. 5, 319–322 (1981). · Zbl 0467.34003
[815] P. Laborde, ”Processus de rafle non convexe,” C. R. Acad. Sci. Paris, Ser. I Math.,293, No. 14, 633–635 (1981). · Zbl 0486.34005
[816] A. Langenbach, ”über implizite Inklusionen und Bifurkation,” Math. Nachr.,123, 255–270 (1985). · Zbl 0592.47052
[817] M. Lassonde, ”On the use of KKM multifunctions in fixed point theory and related topics,” J. Math. Anal. Appl.,97, No. 1, 151–201 (1983). · Zbl 0527.47037
[818] Le Van Hot, ”On the differentiability of multivalued mappings. I, II,” Comment. Math. Univ. Carolin.,22, No. 2, 267–280, 337–350 (1981). · Zbl 0465.47042
[819] Le Van Hot, ”On the open mapping principle and convex multivalued mappings,” Acta Univ. Carolin. Math. Phys.,26, No. 1, 53–59 (1985). · Zbl 0626.46036
[820] A. Lechicki, ”A generalized measure of noncompactness and Dini’s theorem for multifunctions,” Rev. Roumaine Math. Pures Appl.,30, No. 3, 221–227 (1985). · Zbl 0584.54015
[821] S. J. Lee and M. Z. Nashed, ”Gradient method for nondensely defined closed unbounded linear operators,” Proc. Am. Math. Soc.,88, No. 3, 429–435 (1983). · Zbl 0542.47005
[822] S. J. Lee and M. Z. Nashed, ”Least-squares solutions of multivalued linear operator equations in Hilbert spaces,” J. Approx. Theory,38, No. 4, 380–391 (1983). · Zbl 0519.47001
[823] W. Leininger, ”The continuous selection theorem in Rn. A proof by induction,” Econom. Lett.,20, No. 1, 59–61 (1986). · Zbl 1328.54015
[824] A. Leizarowitz, ”Convergence of viable solutions of differential inclusions with convex compact graphs,” SIAM J. Control Optim.,23, No. 4, 514–522 (1985). · Zbl 0574.49021
[825] A. Leizarowitz, ”Existence of overtaking optimal trajectories for problems with convex integrands,” Math. Oper. Res.,10, No. 3, 450–461 (1985). · Zbl 0581.49001
[826] S. Levi, ”A survey of Borel selection theory,” Real Anal. Exchange,9, No. 2, 436–462 (1983–84).
[827] S. Levi, ”Set-valued mappings and an extension theorem for continuous functions,” in: Topology, Theory and Applications (Eger, 1983), Colloq. Math, Soc. Janos Bolyai, No. 41, North-Holland, Amsterdam (1985), pp. 381–392.
[828] S. Levi and A. Maitra, ”Borel measurable images of Polish spaces,” Proc. Am. Math. Soc.,92, No. 1, 98–102 (1984). · Zbl 0526.54008
[829] T.-C. Lim, ”On fixed point stability for set-valued contractive mappings with applications to generalized differential equations,” J. Math. Anal. Appl.,110, No. 2, 436–441 (1985). · Zbl 0593.47056
[830] O. Lipovan, ”Sur 1’intégrabilité des fonctions multivoques,” Anal. Numer. Theor. Approx.,9, No. 1, 75–80 (1980). · Zbl 0447.28008
[831] O. Lipovan, ”A submeasurability criterion for multivalued mappings,” in: Proc. Sem. Functional Equations, Approximation, and Convexity, TimiÇoara (1980), pp. 169–174.
[832] O. Lipovan, ”On the convergence of multivalued function sequences,” Bul. Stiint. Tehn. Inst. Politehn. ”Traian Vuia” TimiÇoara,26, No. 2, 29–32 (1981). · Zbl 0617.28004
[833] O. Lipovan, ”On the {\(\Omega\)} – {\(\gamma\)}-submeasurability of multivalued mappings,” Bul. stiint. Tehn. Inst. Politehn.”Traian Vuia” TimiÇoara,27, No. 1, 21–26 (1982). · Zbl 0617.28010
[834] O. Lipovan, ”A Vitaly type theorem for sequences of multivalued mappings,” Stud. Cerc. Mat.,36, No. 1, 32–37 (1984). · Zbl 0543.28005
[835] O. Lipovan, ”A probabilistic variant of Kolmogorov’s integral for multivalued set functions,” Inst. Politehn. Timicoara, Lucrar. Sem. Mat. Fiz., May, 3–16 (1984). · Zbl 0624.28009
[836] O. Lipovan, ”Differential equivalence of multivalued set functions,” Inst. Politehn. Timicoara, Lucrar. Sem. Mat. Fiz., November, 34–36 (1984). · Zbl 0624.28010
[837] O. Lipovan, ”Sur la complétude des espaces de fonctions multivoques sous-measurable,” in: Proc. Fifteenth National Conference on Geometry and Topology, TimiÇoara (1984), pp. 149–152.
[838] T. Lipski, ”Remarks on simultaneous Blumberg sets,” Bull. Polish Acad. Sci. Math.,32, No. 5–6, 333–338 (1984). · Zbl 0559.54016
[839] Ju. T. Lisica, ”Strong shape theory and multivalued maps,” Glas. Mat.,18, No. 2, 371–382 (1983).
[840] N. G. Lloyd, ”A survey of degree theory: basis and development,” IEEE Trans. Circuits and Systems,GAS-30. No. 8, 607–616 (1983). · Zbl 0527.55009
[841] S. Lojasiewicz, Jr., ”The existence of solutions for lower semicontinuous orientor fields,” Bull. Acad. Pol. Sci. Ser. Sci. Math.,28, No. 9–10, 483–487 (1980).
[842] S. Lojasiewicz, Jr., A. Plis, and R. Suarez, ”Necessary conditions for a nonlinear control system,” J. Differential Equations,59, No, 2, 257–265 (1985). · Zbl 0642.49013
[843] H. P. Lotz, ”Measurable cross sections,” Arch. Math. (Basel),41, No. 3, 267–269 (1983). · Zbl 0552.28013
[844] E. Lowen-Colebunders, ”Open and proper maps characterized by continuous set valued maps,” Can. J. Math.,33, No. 4, 929–936 (1981). · Zbl 0432.54011
[845] E. Luczak-Kumorek and M. Kisielewicz, ”Existence of optimal control for systems described by generalized functional-differential equations of neutral type,” in: 27 Internat. Wiss. Kolloq. (Ilmenau, 1982), Heft 5, Vortragsreihe B1, B2, Technische Hochschule, Ilmenau, pp. 149–151.
[846] E. Luczak-Kumorek and W. Sosulski, ”Controllability of generalized functional-differential systems,” Demonstratio Math.,14, No. 4, 997–1010 (1981). · Zbl 0505.49017
[847] F. J. Luque, ”Asymptotic convergence analysis of the proximal point algorithm,” SIAM J. Control Optim.,22, No. 2, 277–293 (1984). · Zbl 0533.49028
[848] H. Luschgy, ”Measurable selections of limit points,” Arch. Math. (Basel),45, No. 4, 350–353 (1985). · Zbl 0612.28008
[849] M. Luskin, ”On the existence of global smooth solutions for a model equation for fluid flow in a pipe,” J. Math. Anal. Appl.,84, No. 2, 614–630 (1981). · Zbl 0485.76014
[850] T. Mackowiak, ”The fixed point property for set-valued mappings,” Colloq. Math.,45, No. 2, 227–243 (1981). · Zbl 0497.54034
[851] T. Mackowiak, ”Indecomposable continua and the fixed point property. II,” Fund. Math.,118, No. 3, 201–211 (1983).
[852] R. J. Madhusudana, ”An extension of Caristi’s theorem to multifunctions,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,29 (77), No. 1, 79–80 (1985). · Zbl 0561.54041
[853] G. Magerl, R. D. Mauldin, and E. Michael, ”A parametrization theorem,” Topology Appl.,21, No. 1, 87–94 (1985). · Zbl 0591.54009
[854] A. Maitra, ”Selectors for Borel sets with large sections,” Proc. Am. Math. Soc.,89, No. 4, 705–708 (1983). · Zbl 0591.28007
[855] A. Maitra and V. V. Srivatsa, ”Parametrizations of Borel sets with large sections,” Proc. Am. Math. Soc.,93, No. 3, 543–548 (1985). · Zbl 0565.54016
[856] T. K. Majumder, ”Proximity carrier,” Indian J. Pure Appl. Math.,16, No. 9, 965–974 (1985). · Zbl 0593.54026
[857] M. Malec, ”Differential and integral inclusions in a Banach space,” Sb. VSCHT Praze,R4, 139–142 (1982).
[858] R. J. Margalef and E. Outerelo Dominguez, ”Some characterizations ofc-paracompact andc-collectionwise normal spaces by continuous selections,” Rev. Mat. Hisp.-Am., Ser. IV,40, No. 1–2, 25–40; No. 3–4, 96–114 (1980). · Zbl 0549.54015
[859] P. Maritz, ”Some remarks on measurable and semi-continuous multifunctions,” Lect. Notes Math., No. 1089, 111–119 (1984). · Zbl 0549.28005
[860] P. Maritz, ”Bilinear integration of an extreme point multifunction,” Real Anal. Exchange,11, No. 1, 134–158 (1985–86). · Zbl 0596.28016
[861] T. Maruyama, ”On a multivalued differential equation: an existence theorem,” Proc. Jpn. Acad.,A60, No. 5, 161–164 (1984). · Zbl 0549.49006
[862] T. Maruyama, ”Variatlonal problems governed by a multivalued differential equation,” Proc. Jpn. Acad.,A60, No. 6, 212–214 (1984). · Zbl 0549.49007
[863] S. Massa, ”Generalized multicontractive mappings,” Riv. Mat. Univ. Parma,6, 103–110 (1980). · Zbl 0485.54039
[864] S. Massa, ”Multiapplications du type de Kannan,” Lect. Notes Math., No. 886, 265–269 (1981).
[865] S. Massa and D. Roux, ”Multicontractive Kannan maps in normed spaces,” Istit. Lombardo Accad. Sci. Lett. Rend.,A113, 125–129 (1979). · Zbl 0467.54030
[866] M. Matloka, ”On fuzzy multivalued functions. Part 3: Fixed-point theorem,” Fuzzy Sets and Systems,15, No. 3, 255–262 (1985). · Zbl 0583.54012
[867] K. Matolcsy, ”Topogenous g-mappings,” Publ. Math. Debrecen,30, No. 1–2, 93–100 (1983). · Zbl 0542.54003
[868] H.-O. May, ”Nichtdifferenzierbare Funktionen in der Analytischen Mechanik,” Z. Angew. Math. Mech.,64, No. 5, T379-T380 (1984).
[869] J. F. McClendon, ”Note on a selection theorem of Mas-Colell,” J. Math. Anal. Appl.,77, No. 1, 326–327 (1980). · Zbl 0446.54018
[870] J. F. McClendon, ”Fixed points of subopen multifunctions,” Proc. Am. Math. Soc.,84, No. 3, 425–428 (1982). · Zbl 0492.54029
[871] J. F. McClendon, ”Subopen multifunctions and selections,” Fund. Math.,121, No. 1, 25–30 (1984). · Zbl 0575.54016
[872] J. F. McClendon, ”On noncontractible valued multifunctions,” Pac. J. Math.,115, No. 1, 155–163 (1984). · Zbl 0559.54029
[873] Z. Meike, ”Existence for a parabolic equation with nonlinear boundary value conditions,” An. sttint. Univ. ”Al. I. Cuza”, laÇi, Sec. Ia Mat.,28, No. 1, 109–122 (1982).
[874] A. Meimaridou, ”On the tangency of multifunctions,” Ann. Polon. Math.,45, No. 2, 143–148 (1985). · Zbl 0583.46034
[875] D. Melzer, ”Differentiability of polyhedral-valued mappings,” Seminarberichte No. 64, Humboldt-Univ., Berlin (1984), pp. 62–66. · Zbl 0601.52007
[876] V. Mendaglio and L. S. Dube, ”On fixed points of multivalued mappings,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,25 (73), No. 2, 167–170 (1981). · Zbl 0465.54040
[877] Gh. Morosanu, ”On a class of nonlinear differential hyperbolic systems,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 515–518.
[878] E. Michael, ”Continuous selections: some old and some new results,” in: Topology, Vol. II, Proc. Fourth Colloq. (Budapest, 1978), Colloq. Math. Soc. Janos Bolyai, No. 23, North-Holland, Amsterdam (1980), pp. 849–851.
[879] E. Michael, ”Continuous selections and finite-dimensional sets,” Pac. J. Math.,87, No. 1, 189–197 (1980). · Zbl 0405.54016
[880] E. Michael, ”Continuous selections and countable sets,” Fund. Math.,111, No. 1, 1–10 (1981). · Zbl 0455.54012
[881] E. Michael and C. Rixley, ”A unified theorem of continuous selections,” Pac. J. Math.,87, No. 1, 187–188 (1980). · Zbl 0405.54015
[882] A. Miczko and B. Palczewski, ”On convergence of successive approximations of some generalized contraction mappings,” Ann. Polon. Math.,40, No. 3, 213–232 (1983). · Zbl 0538.54034
[883] S. Mirica, ”The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mappings,” Nonlinear Anal.,6, No. 12, 1335–1368 (1982). · Zbl 0529.26010
[884] S. N. Mishra, ”A note on comnon fixed points of multivalued mappings in uniform spaces,” Math. Sem. Notes Kobe Univ.,9, No. 2, 341–347 (1981). · Zbl 0485.54040
[885] S. N. Mishra, ”On common fixed points of multimappings in uniform spaces,” Indian J. Pure Appl. Math.,13, No. 5, 606–608 (1982). · Zbl 0479.54027
[886] V. V. Mishkin (V. Miskin), ”Upper and lower semicontinuous set-valued maps into{\(\sigma\)}-spaces,” General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981), Heldermann, Berlin (1983), pp. 486–487.
[887] E. Mitidieri, ”Asymptotic behaviour of some second order evolution equations,” Nonlinear Anal.,6, No. 11, 1245–1252 (1982). · Zbl 0504.47040
[888] E. Mitidieri and G. Morosanu, ”Asymptotic behaviour of the solutions of second order difference equations associated to monotone operators,” Numer. Funct. Anal. Optim.,8, No. 3–4, 419–434 (1985–86). · Zbl 0628.39004
[889] A. I. Mitrea, ”Remarks concerning the connection between the fixed point theorems and the mean-value theorems,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Semin., No. 3, 59–68 (1985).
[890] A. I. Mitrea, ”On some fixed point theorems for multivalued mappings,” Proc. Symp. Math. and Appl. (TimiÇoara, 1985), TimiÇoara (1986), pp. 49–52.
[891] Mohamed Ahmed Gamal, ”Perturbation non convexe d’un problème d’évolution dans un éspace Hilbertien,” Acta Math. Vietnam.7, No. 2, 171–200 (1982). · Zbl 0548.47025
[892] R. E. Moore, ”Set-valued extensions of integral inequalities,” J. Integral Equations,5, No. 3, 187–198 (1983). · Zbl 0516.45022
[893] C. Morales, ”Set-valued mappings in Banach spaces,” Houston J. Math.,9, No. 2, 245–253 (1983). · Zbl 0523.47038
[894] C. Morales, ”Nonlinear equations involving m-accretive operators,” J. Math. Anal. Appl.,97, No. 2, 329–336 (1983). · Zbl 0542.47042
[895] C. H. Morales, ”Surjectivity theorems for multi-valued mappings of accretive type,” Comment. Math. Univ. Carolin., 26, No. 2, 397–413 (1985). · Zbl 0595.47041
[896] P. Morales, ”Compactness of subsets of Tychonoff sets via exponential laws,” J. Austral. Math. Soc.,A34, No. 3, 368–376 (1983). · Zbl 0524.54012
[897] G. Morosanu, ”Existence for nonlinear differential systems of hyperbolic type,” An. Stiint. Univ. ”Al. I. Cuza” IaÇi, Sect. Ia Mat.,26, No. 2, 345–352 (1980).
[898] G. Morosanu, ”Stability of solutions of nonlinear boundary value problems for hyperbolic systems,” Nonlinear Anal.,5, No. 1, 61–70 (1981). · Zbl 0452.35008
[899] G. Morosanu, ”Mixed problems for a class of nonlinear differential hyperbolic systems,” J. Math. Anal. Appl.,83, No. 2, 470–485 (1981). · Zbl 0476.35053
[900] G. Morosanu, ”On a class of nonlinear differential hyperbolic systems with nonlocal boundary conditions,” J. Differential Equations,43, No. 3, 345–368 (1982). · Zbl 0452.35081
[901] G. Morosanu, ”Asymptotic dosing problem for evolution equations in Hilbert spaces,” An. Stiint. Univ. ”Al. I. Cuza” IaÇi Sect. I a Mat.,28, No. 1, 127–138 (1982).
[902] R. N. Mukherjee, ”Some random fixed point theorems for multivalued and single-valued mappings,” Indian J. Pure Appl. Math.,13, No. 4, 429–432 (1982). · Zbl 0484.54035
[903] R. N. Mukherjee and T. Som, ”On some fixed point theorems for generalized multivalued mappings,” Indian J. Pure Appl. Math.,14, No. 12, 1506–1509 (1983). · Zbl 0545.54035
[904] G. O. Müller, ”Fixed points of self mappings of noncompact convex sets,” Arch. Math. (Basel),39, No. 4, 348–358 (1982). · Zbl 0522.47047
[905] G. Muni, ”Intorno ad alcuni teoremi di selezione,” Rend. Istit. Mat. Univ. Trieste,12, No. 1–2, 1–9 (1980).
[906] A. Münnich and A. Száz, ”An alternative theorem for continuous relations and its applications,” Publ. Inst. Math. (Beograd),33, 163–168 (1983). · Zbl 0539.54008
[907] A. Münnich and A. Száz, ”Relations preserving semicontinuities of relations,” Publ. Math. Debrecen,30, No. 3–4, 235–237 (1983). · Zbl 0548.54010
[908] A. S. MureÇan, ”On some invariant problem of fixed points set for multivalued mappings,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Semin., No. 3, 37–42 (1985).
[909] Le Dung Muu, ”Stability property of a class of variational inequalities,” Math. Operationsforsch. Statist. Ser. Optim.,15, No. 3, 347–351 (1984). · Zbl 0553.49007
[910] J. Nagy, ”Local generalized semidynamical systems,” Godishnik Vissh. Uchebn. Zaved, Prilozhna Mat.,15, No. 3, 105–114 (1979(1980)).
[911] S. V. R. Naidu and J. R. Prasad, ”Fixed point theorems for set-valued maps on a metric space,” Indian J. Pure Appl. Math.,17, No. 3, 286–307 (1986). · Zbl 0592.54046
[912] S. A. Naimpally, S. L. Singh, and J. H. M. Whitfield, ”Coincidence theorems for hybrid contractions,” Math. Nachr.,127, 177–180 (1986). · Zbl 0602.54049
[913] Z. Naniewicz, ”A dual method for some class of systems of variational inequalities,” Ann. Polon. Math.,45, No. 1, 85–92 (1985).
[914] H. Narushima, ”Principle of inclusion-exclusion on partially ordered sets,” Discrete Math.,42, No. 2–3, 243–250 (1982). · Zbl 0497.06003
[915] S. I. Nedev, ”Selection and factorization theorems for set-valued mappings,” Serdica,6, No. 4, 294–317 (1980). · Zbl 0492.54006
[916] S. I. Nedev, ”A selection theorem,” C. R. Acad. Bulgare Sci.,35, No. 7, 873–876 (1982). · Zbl 0529.54014
[917] S. I. Nedev and V. M. Valov, ”On metrizability of selectors,” C. R. Acad. Bulgare Sci.,36, No. 11, 1363–1366 (1983). · Zbl 0549.54013
[918] S. I. Nedev and V. M. Valov, ”Normal selectors for the normal spaces,” C. R. Acad. Bulgare Sci.,37, No. 7, 843–846 (1984). · Zbl 0556.54013
[919] S. I. Nedev and V. M. Valov, ”Some properties of selectors,” C. R. Acad. Bulgare Sci.,38, No. 12, 1593–1596 (1985). · Zbl 0619.54014
[920] N. Negoescu, ”Remarques sur les points fixes comnuns pour des paires de fonctions et de fonctions multivoques contractives,” An. Sttint. Univ. ”Al. I. Cuza”, IaÇi, Sect. Ia Mat.,28, No. 2, Suppl., 23–29 (1982). · Zbl 0522.54033
[921] G. Nepomnyashchii (G. Nepomnjascii), ”A spectral characterization of absolute multivalued retracts,” General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981), Heldermann, Berlin (1983), pp. 507–510.
[922] S. C. Nešić, ”Extensions of fixed point theorems of ciric,” Mat. Vesnik,5, No. 2, 183–187 (1981).
[923] T. Neubrunn, ”On quasicontinuity of multifunction,” Math. Slovaca,32, No. 2, 147–154 (1982). · Zbl 0483.54009
[924] T. Neubrunn, ”On Blumberg sets for multifunctions,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,30, No. 3–4, 109–113 (1982). · Zbl 0495.54015
[925] T. Neubrunn, ”Multifunctions and quasicontinuity,” in: General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981), Heldermann, Berlin (1983), pp. 511–512.
[926] T. Neubrunn, ”On weak forms of continuity of functions and multifunctions,” Acta Math. Univ. Comenian., No. 42–43, 145–151 (1983(1984)). · Zbl 0541.54022
[927] T. Neubrunn, ”c-continuity and closed graphs,” Casopis Pest. Mat.,110, No. 2, 172–178 (1985). · Zbl 0589.54027
[928] T. Neubrunn and O. Nather, ”On a characterization of quasicontinuous multifunctions,” Casopis Pest. Mat.,107, No. 3, 294–300 (1982). · Zbl 0532.54016
[929] M. M. Neumann, ”An application of fixed-point theory to equilibrium analysis,” Rend. circ. Mat. Palermo,33, No. 5, Suppl., 83–94 (1984). · Zbl 0559.90019
[930] Nguyen Huu Dien, ”Some common fixed point theorems in metric spaces,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., No. 3, 15–36 (1985).
[931] Nguyen Huy Viet, ”Some fixed point theorems for nowhere normal-outward set valued mappings,” Acta Math. Vietnam.7, No. 2, 59–66 (1982).
[932] Nguyen Khoa So’n, ”Linear systems with state constraints in Banach spaces,” Acta Math. Vietnam.7, No. 1, 71–86 (1982). · Zbl 0572.49002
[933] Nguyen Xuan Tan, ”Banach-Steinhaus theorem for multivalued mappings,” Math. Nachr.,102, 157–167 (1981). · Zbl 0483.46003
[934] Nguyen Xuan Tan, ”On the continuity of multivalued mappings and the stability of fixed points,” Acta Math. Vietnam.7, No. 2, 201–212 (1982). · Zbl 0588.47063
[935] Nguyen Xuan Tan, ”Quasivariational inequalities in topological linear locally convex Hausdorff spaces,” Math. Nachr.,122, 231–245 (1985).
[936] Nguyen Xuan Tan, ”Banach-Steinhaus principle for convex multivalued mappings,” Math. Nachr.,126, 45–54 (1986). · Zbl 0624.47064
[937] Nguyen Xuan Tan, ”Some applications of degree theory in bifurcation problems,” Z. Anal. Anwendungen,5, No. 4, 347–366 (1986). · Zbl 0602.34040
[938] Nguyen Xuan Tan, ”On the existence of positive eigenvalues for a triplet of nonlinear and noncompact mappings,” Math. Nachr.,128, 299–314 (1986). · Zbl 0625.47047
[939] K. L. Nickel, ”Bounds for the set of solutions of functional-differential equations,” Ann. Polon. Math.,42, 241–257 (1983). · Zbl 0537.34066
[940] H.-D. Niepage, ”Convergence of multistep methods for differential equations with multivalued right hand side,” Seminarber. Huooldt-Univ. Berlin, Sek. Math., No. 32, 72–83 (1980). · Zbl 0472.65069
[941] H.-D. Niepage, Implicit differential inclusions and differential inequalities. Preprint Humboldt-Univ. Berlin, Sekt. Math., No. 38 (1982).
[942] H.-D. Niepage, ”On the existence of solutions of differential-algebraic inclusions,” Preprint Humboldt-Univ. Berlin, Sekt. Math., No. 50 (1983).
[943] J. W. Nieuwenhuis, ”Some remarks on set-valued dynamical systems,” J. Austral. Math, Soc.,B22, No. 3, 308–313 (1981). · Zbl 0464.49028
[944] K. Nikodem, ”On additive set valued functions,” Rev. Roumaine Math. Pures Appl.,26, No. 7, 1005–1013 (1981). · Zbl 0468.28012
[945] K. Nikodem, ”Additive set valued functions in Hilbert spaces,” Rev. Roumaine Math. Pures Appl.,28, No. 3, 239–242 (1983). · Zbl 0516.28014
[946] K. Nikodem, ”On quadratic set valued functions,” Publ. Math. Debrecen,30, No. 3–4, 297–301 (1983). · Zbl 0537.39002
[947] A. Nowak, ”On generalized random differential equations,” Demonstratio Math.,16, No. 2, 469–476 (1983). · Zbl 0528.60061
[948] G. Nürnberger and M. Sommer, ”Continuous selections in Chebyshev approximations,” in: Parametric Optimization and Approximation, Proc. Internat. Symp. (Oberwolfach, 1983), Birkhauser, Basel (1985), pp. 248–263.
[949] V. V. Obuhovskii, ”A degree and fixed points for a class of noncompact multivalued maps,” in: Leningrad International Topology Conference. Reports, Nauka, Leningrad (1982), p. 116.
[950] N. Okazawa, ”An application of the perturbation theorem for m-accretive operators. II,” Proc. Jpn. Acad.,A60, No. 1, 10–13 (1984). · Zbl 0599.47077
[951] H. Okochi, ”Asymptotic strong convergence of nonlinear contraction semigroups,” Tokyo J. Math.,5, No. 1, 171–182 (1982). · Zbl 0499.47047
[952] H. Okochi, ”Asymptotic behavior of solutions to certain nonlinear parabolic evolution equations,” Hiroshima Math. J.,14, No. 2, 265–281 (1984). · Zbl 0599.47105
[953] C. Olech, ”Boundary solutions of differential inclusion,” Lecture Notes in Math., No. 979, 236–239 (1983).
[954] C. Olech, ”Decomposability as a substitute for convexity,” Lecture Notes in Math., No. 1091, 193–205 (1984). · Zbl 0592.28008
[955] B. Onzol and W. Sosulski, ”Multivalued functional-differential equations with compact right-hand side in Banach space,” Discuss. Math.,5, 123–133 (1982). · Zbl 0532.49023
[956] W. Orlicz and R. Urbanski, ”Total variation of a set-valued measure,” Comment. Math. Prace Mat.,23, No. 1, 85–89 (1983). · Zbl 0593.28008
[957] M. Otani, ”Existence and asymptotic stability of strong solutions of nonlinear evolution equations with a difference terms of subdifferentials,” in: Qualitative Theory of Differential Equations, Vol. II, Amsterdam (1981), pp. 795–809.
[958] M. Otani, ”Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems,” J. Differential Equations,46, No. 2, 268–299 (1982). · Zbl 0495.35042
[959] M. Otani, ”Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems,” J. Differential Equations,54, No. 2, 248–273 (1984). · Zbl 0556.35074
[960] O. Ozer, ”A note on multifunctions,” Acta Sci. Math. (Szeged),46, No. 1–4, 121–125 (1983). · Zbl 0576.54021
[961] O. Ozer, ”On almost strongly upper semicontinuous multifunctions,” Indian J. Pure Appl. Math.,17, No. 1, 61–65 (1986). · Zbl 0604.54017
[962] D. V. Pai and P. Govindarajulu, ”On set-valued f-projections and f-farthest point mappings,” J. Approx. Theory,42, No. 1, 4–13 (1984). · Zbl 0561.41026
[963] D. V. Pai and P. Veeramani, ”Fixed point theorems for multimappings,” Indian J. Pure Appl. Math.,11, No. 7, 891–896 (1980). · Zbl 0436.54038
[964] D. V. Pai and P. Veeramani, ”Some fixed point theorems for multimappings,” Indian J. Pure Appl. Math.,14, No. 9, 1157–1165 (1983). · Zbl 0531.54049
[965] P. D. Panagiotopoulos, ”Dynamic and incremental variational inequality principles, differential inclusions and their applications to co-existent phases problems,” Acta Mech.,40, No. 1–2, 85–107 (1981). · Zbl 0471.49006
[966] A. I. Panasyuk and M. S. Shmakov, ”Survey on dynamics of sets in control and its applications,” in: 30 Internat. Wiss. Kolloq. (Ilmenau, 1985), Heft 4, Vortragsreihe E., Technische Hochschule, Ilmenau (1985), pp. 109–122.
[967] M. Paoli and E. Ripoli, ”Su Un’immersions in topologie su spazi di sottoinsiemi,” Boll. Un. Mat. Ital.,A4, No. 1, 111–118 (1985). · Zbl 0576.54011
[968] N. S. Papageorgiou, ”Fixed point theorems for multifunctions in metric and vector spaces,” Nonlinear Anal.,7, No. 7, 763–770 (1983). · Zbl 0529.54043
[969] N. S. Papageorgiou, ”Nonsmooth analysis on partially ordered vector spaces. Part 2. Nonconvex case, Clarke’s theory,” Pac. J. Math.,109, No. 2, 463–495 (1983).
[970] N. S. Papageorgiou, ”Random fixed point theorems for multifunctions,” Math. Japon.,29, No. 1, 93–106 (1984). · Zbl 0541.54057
[971] N. S. Papageorgiou, ”Fuzzy topology and fuzzy multifunctions,” J. Math. Anal. Appl.,109, No. 2, 397–425 (1985). · Zbl 0588.54007
[972] N. S. Papageorgiou, ”On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures,” J. Multivariate Anal.,17, No. 2, 207–227 (1985). · Zbl 0579.28010
[973] N. S. Papageorgiou, ”On abstract conditional expectations,” J. Math. Anal. Appl.,111, No. 1, 35–48 (1985). · Zbl 0584.60009
[974] N. S. Papageorgiou, ”Trajectories of set valued integrals,” Bull. Austral. Math. Soc.,31, No. 3, 389–411 (1985). · Zbl 0577.28007
[975] N. S. Papageorgiou, ”On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation,” J. Multivariate Anal.,12, No. 2, 185–206 (1985). · Zbl 0579.28009
[976] N. S. Papageorgiou, ”Representation of set valued operators,” Trans. Am. Math. Soc.,292, No. 2, 557–572 (1985). · Zbl 0605.46037
[977] N. S. Papageorgiou, ”The integral theory of Ioffe’s fans,” J. Math. Anal. Appl.,113, No. 2, 544–561 (1986). · Zbl 0592.28007
[978] N. S. Papageorgiou, ”A stability result for differential inclusions in Banach spaces,” J. Math. Anal. Appl.,118, No. 1, 232–246 (1986). · Zbl 0594.34016
[979] N. S. Papageorgiou, ”Random fixed point theorems for measurable multifunctions in Banach spaces,” Proc. Am. Math. Soc.,97, No. 3, 507–514 (1986). · Zbl 0606.60058
[980] N. S. Papageorgiou, ”Flow invariance and viability for differential inclusions,” Applicable Analysis,21, 235–243 (1986). · Zbl 0598.34010
[981] G. S. Pappas, ”Optimal solutions to differential inclusions in presence of state constraints,” J. Optim. Theory Appl.,44, No. 4, 657–679 (1984). · Zbl 0546.49015
[982] Jong An Park and Sehie Park, ”Surjectivity of-accretive operators,” Proc. Am. Math. Soc.,90, No. 2, 289–292 (1994). · Zbl 0562.47042
[983] S. Park and S. Yie, ”Remarks on the Ekeland type fixed point theorem and directional contractions,” Math. Japon.,30, No. 3, 435–439 (1985). · Zbl 0582.47045
[984] L. Pasicki, ”A fixed point theory for multivalued mappings,” Proc. Am. Math. Soc.,83, No. 4, 781–789 (1981). · Zbl 0474.54034
[985] L. Pasicki, ”Some fixed point theorems for multivalued mappings,” Bull. Polish Acad. Sci. Math.,31, No. 5–8, 291–294 (1983). · Zbl 0625.54049
[986] L. Pasicki, ”Nonempty intersection and minimax theorems,” Bull. Polish Acad. Sci. Math.,31, No. 5–8, 295–298 (1983). · Zbl 0547.54030
[987] L. Pasicki, ”On S-affine mappings,” Opuscula Math., No. 2, 47–52 (1986). · Zbl 0621.54028
[988] G. B. Passty, ”Preservation of the asymptotic behavior of a nonlinear contraction semigroup by backward differencing,” Houston J. Math.,7, No. 1, 103–110 (1981). · Zbl 0469.47050
[989] N. H. Pavel, ”Some problems on nonlinear semigroups and the blow-up of integral solutions,” Lect. Notes Math., No. 1076, 168–186 (1984).
[990] A. Pazy, ”The Lyapunov method for semigroups of nonlinear contractions in Banach spaces,” J. Analyse Math.,40, 239–262 (1981). · Zbl 0507.47042
[991] A. Pelczar, ”Semi-stability of motions and regular dependence of limit sets on points in general semi-systems,” Ann. Polon. Math.,42, 263–282 (1983). · Zbl 0589.34041
[992] J. P. Penot, ”A characterization of tangential regularity,” Nonlinear Anal.,5, No. 6, 625–643 (1981). · Zbl 0472.58010
[993] J. P. Penot and M. Thera, ”Semi-continuous mappings in general topology,” Arch. Math. (Basel),38, No. 2, 158–166 (1982). · Zbl 0465.54019
[994] J. P. Penot and M. Thera, ”Applications sous-linéaires à valeurs dans un espace de fonctions continues,” Ann. Mat. Pura Appl.,136, 133–151 (1984). · Zbl 0609.46021
[995] M. P. Pera, G. Stefani, and P. Zecca, ”On time dependent control problems with a set of initial states,” Boll. Un. Mat. Ital.,C18, No. 1, 161–173 (1981). · Zbl 0483.49029
[996] A. Petrusel, ”On the fixed points set of multivalued mappings,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Semin., No. 3, 53–58 (1985).
[997] W. V. Petryshin, ”On the solvability ofx {\(\epsilon\)}Tx + {\(\lambda\)}Fx in quasinormal cones withT andF k-set-contractive,” Nonlinear Anal.,5, No. 5, 585–591 (1981). · Zbl 0474.47028
[998] W. V. Petryshin, ”Some results on multiple positive fixed points of multivalued condensing maps,” Contemp. Math.,21, 171–177 (1983). · Zbl 0531.47047
[999] D. Petz, ”Direct integral of multifunctions into von Neumann algebras,” Stud. Sci. Math. Hung.,18, No. 2–4, 239–245 (1983). · Zbl 0583.46050
[1000] Phan Van Chuong, ”Quelques theoremes de point fixe aleatoire,” C. R. Acad. Sci. Paris, Ser, A-B,291, No. 4, A259-A262 (1980). · Zbl 0445.54030
[1001] Phan Van Chu’o’ng, ”Random versions of Kakutani-Ky Fan’ s fixed point theorems,” J. Math. Anal. Appl.,82, No. 2, 473–490 (1981). · Zbl 0487.60055
[1002] Phan Van Chu’o’ng, ”On the density of extremal selections for measurable multifunctions,” Acta Math. Vietnam,6, No. 2, 13–28 (1981).
[1003] Phan Van Chu’o’ng, ”Sur l’éxistence des solutions d’une équation intégrale multivoque a paramètre aléatoire,” C. R. Acad. Sci. Paris, Ser. I Math.297, No. 5, 283–286 (1983).
[1004] Phan Van Chu’o’ng, ”Existence of solutions for random multivalued Volterra integral equations. I, II,” J. Integral Equations,7, No. 2, 143–173, 175–185 (1984). · Zbl 0553.60061
[1005] Phan Van Chu’o’ng, ”Un résultat d’existence de solutions pour des équations différentielles multivoques,” C. R. Acad. Sci. Paris, Ser. I Math.,301, No. 8, 339–402 (1985).
[1006] K. Pilzweger, ”On a selection problem of statistical decision theory,” Statist. Decisions, Suppl. No. 1, 307–326 (1984). · Zbl 0598.62005
[1007] A. T. Plant, ”On the asymptotic stability of solutions of Volterra integrodifferential equations,” J. Differential Equations,39, No. 1, 39–51 (1981). · Zbl 0419.45005
[1008] A. T. Plant, ”Four inequalities for monotone gradient vector fields,” Arch. Rational. Mech. Anal.82, No. 4, 377–389 (1983). · Zbl 0524.47044
[1009] E. I. Poffald and S. Reich, ”A quasiautonomous second-order differential inclusion,” in: Trends in the Theory and Practice of Nonlinear Analysis (Arlington, Texas, 1984), North-Holland Math. Studies No. 110, North-Holland, Amsterdam (1985), pp. 387–392.
[1010] E. I. Poffald and S. Reich, ”An incomplete Cauchy problem,” J. Math. Anal. Appl.,113, No. 2, 514–543 (1986). · Zbl 0599.34078
[1011] V. Popa, ”Almost continuous multifunctions,” Mat. Vesnik,6, No. 1, 75–84 (1982). · Zbl 0518.54017
[1012] V. Popa, ”Fixed points theorems for multifunctions,” Studia Univ. BabeÇ-Bolyai Math.,27, 21–27 (1982). · Zbl 0503.47046
[1013] V. Popa, ”Multifonctions semi-continues,” Rev. Roumaine Math. Pures Appl.,27, No. 7, 807–815 (1982). · Zbl 0505.54018
[1014] V. Popa, ”Weakly continuous multifunctions defined on bitopological spaces,” Stud. Cerc. Mat.,34, No. 6, 561–567 (1982). · Zbl 0511.54017
[1015] V. Popa, ”Strongly continuous multifunctions,” Bul. Stiint. Tehn. Inst. Politehn.” Traian Vuia” TimiÇoara,27, No. 1, 5–7 (1982). · Zbl 0619.54012
[1016] V. Popa, ”On continuity conditions for multifunctions,” Stud. Cerc. Mat.,35, No. 1, 46–51 (1983). · Zbl 0518.54018
[1017] V. Popa, ”Theorems on multifunctions satisfying a rational inequality,” Comment. Math. Univ. Carolin.,24, No. 4, 673–680 (1983). · Zbl 0537.54033
[1018] V. Popa, ”Some properties of almost continuous multifunctions,” Mat. Vesnik,35., No. 4, 425–432 (1983). · Zbl 0606.54017
[1019] V. Popa, ”Fixed point theorems for a sequence of multifunctions,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,28 (76), No. 3, 251–257 (1984). · Zbl 0551.54035
[1020] V. Popa, ”On some weakened forms of continuity for multifunctions,” Mat. Vesnik,36, No. 4, 339–350 (1984). · Zbl 0566.54007
[1021] V. Popa, ”Some characterizations of quasicontinuous and weakly continuous multifunctions,” Stud. Cerc. Mat.,37, No. 1, 77–82 (1985). · Zbl 0559.54015
[1022] V. Popa, ”Sur certaines formes faibles de continuité pour les multifunctions,” Rev. Roumaine Math. Pures Appl.,30, No. 7, 539–546 (1985). · Zbl 0594.54018
[1023] V. Popa, ”Common fixed points for multifunctions satisfying a rational inequality,” Kobe J. Math.,2, No. 1, 23–28 (1985). · Zbl 0591.54037
[1024] V. Popa, ”Common fixed points of a sequence of multifunctions,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Semin., No. 3, 59–68 (1985).
[1025] Shiv Prasad, R. N. Mukherjee, and T. Som, ”A variable drop theorem and a fixed point theorem via maximal element techniques,” Indian J. Pure Appl. Math.,17, No. 2, 175–179 (1986). · Zbl 0581.54030
[1026] R. Precup, ”Le theoreme des contractions dans des espaces syntopogenes,” Anal. Numer. Theor. Approx.,9, No. 1, 113–123 (1980). · Zbl 0522.54039
[1027] A. M. Precupanu, ”On the set-valued additive and subadditive functions,” An. stiint. Univ. IaÇi, Sec, Ia,29, No. 3, Suppl. 41–48 (1983). · Zbl 0542.28010
[1028] J. B. Prolla, ”Fixed-point theorems for set-valued mappings and existence of best approximants,” Numer. Funct. Anal. Optim.,5, No. 4, 449–455 (1982–83). · Zbl 0513.41015
[1029] J. B. Prolla and S. Machado, ”Weierstrass-Stone theorems for set-valued mappings,” J. Approx. Theory,36, No. 1, 1–15 (1982). · Zbl 0493.41042
[1030] J. Pruss, ”A characterization of uniform convexity and applications to accretive operators,” Hiroshima Math. J.,11, No. 2, 229–234 (1981).
[1031] T. Pruszko, ”A coincidence degree for L-compact convex-valued mappings and its application to the picard problem for orientor fields,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,27, No. 11–12, 895–902 (1979). · Zbl 0459.47055
[1032] T. Pruszko, ”Topological degree methods in multi-valued boundary value problems,” Nonlinear Anal.,5, No. 9, 959–973 (1981). · Zbl 0478.34017
[1033] P. Pucci and G. Vitillaro, ”A representation theorem for Aumann integrals,” J. Math. Anal. Appl.,102, No. 1, 86–101 (1984). · Zbl 0544.28009
[1034] M. L. Puri and D. A. Ralescu, ”Differentielle d’une fonction floue,” C. R. Acad. Sci. Paris, Ser. I,293, No. 4, 237–239 (1981). · Zbl 0489.46038
[1035] M. L. Puri and D. A. Ralescu, ”Strong law of large numbers with respect to a set-valued probability measure,” Ann. Probab.,11, No. 4, 1051–1054 (1983). · Zbl 0518.62033
[1036] M. L. Puri and D. A. Ralescu, ”Fuzzy random variables,” J. Math. Anal. Appl.,114, No. 2, 409–422 (1986). · Zbl 0592.60004
[1037] L. Qi, ”Uniqueness of the maximal extension of a monotone operator,” Nonlinear Anal.,7, No. 4, 325–332 (1983). · Zbl 0508.47055
[1038] L. Qi, ”Complete closedness of maximal monotone operators,” Math. Oper. Res.,8, No. 2, 315–317 (1983). · Zbl 0516.47029
[1039] S. Raczynski, ”On some generalization of ”bang-bang” control,” J. Math. Anal. Appl.,98, No. 1, 282–295 (1984). · Zbl 0532.49003
[1040] T. J. Ransford, ”Open mapping, inversion and implicit function theorems for analytic multivalued functions,” Proc. London Math. Soc.49, No. 3, 537–562 (1984). · Zbl 0526.46045
[1041] T. J. Ransford, ”Interpolation and extrapolation of analytic multivalued functions,” Proc. London Math. Soc.,50, No. 3, 480–504 (1985). · Zbl 0535.30035
[1042] T. J. Ransford, ”The spectrum of an interpolated operator and analytic multivalued functions,” Pac. J. Math.,121, No. 2, 445–466 (1986). · Zbl 0546.46062
[1043] G. S. Rao and S. Muthukumar, ”A note on the semi-continuity properties of the farthest point map,” Indian J. Pure Appl. Math.,11, No. 10, 1293–1296 (1980). · Zbl 0463.41021
[1044] I. H. N. Rao and K. P. R. Rao, ”Generalizations of fixed point theorems of Meir and Keeler type,” Indian J. Pure Appl. Math.,16, No. 11, 1249–1262 (1985). · Zbl 0594.54031
[1045] K. Balakrishna Reddy and P. V. Subrahmanyam, ”Altman’s contractors and fixed points of multivalued mappings,” Pac. J. Math.,99, No. 1, 127–136 (1982). · Zbl 0528.47043
[1046] K. Balakrishna Reddy and P. V. Subrahmanyam, ”Directional contractors and fixed points of multivalued mappings,” Nonlinear Anal.,7, No. 9, 1021–1028 (1983). · Zbl 0539.47041
[1047] S. Reich, ”Some problems and results in fixed point theory,” Contemp. Math.,21, 179–187 (1983). · Zbl 0531.47048
[1048] A. Reinoza, ”Global behavior of generalized equations: A Sard theorem,” SIAM J. Control Optim.,21, No. 3, 443–450 (1983). · Zbl 0518.49023
[1049] B. Rendi, ”On a differential for a class of multifunctions,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., No. 6, 159–164 (1984).
[1050] D. Rendi, Cs. Hatvany, and B. Rendi, ”On multimorphism of linear spaces,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., No. 6, 169–172 (1984). · Zbl 0626.54020
[1051] D. Rendi, Cs. Hatvany, and B. Rendi, ”On continuous multimorphism,” Inst. Politehn. TimiÇoara, Lucrar. Sem. Mat. Fiz., May, 17–19 (1984). · Zbl 0626.54020
[1052] D. Rendi and B. Rendi, ”On a generalized inverse matrix,” Inst. Politehn. TimiÇoara, Lucrar. Sem. Mat. Fiz., May, 71–74 (1984). · Zbl 0624.15002
[1053] D. Rendi and B. Rendi, ”Multifunctions and the generalized inverse map,” Int Proc. Fifteenth National Conference on Geometry and Topology, TimiÇoara (1984), pp. 249–252. · Zbl 0647.54015
[1054] B. E. Rhoades, ”Fixed point theorems for set-valued mappings,” Math. Sem. Notes Kobe Univ.,10, No. 2, 479–484 (1982). · Zbl 0516.54035
[1055] B. Ricceri, ”Sur la semi-continuité inférieure de certaines multifonctions,” C. R. Acad. Sci. Paris Ser. I Math.,294, No. 7, 265–267 (1982). · Zbl 0483.54010
[1056] B. Ricceri, ”Sur l’approximation des séléctions mesurables,” C. R. Acad. Sci. Paris, Ser. I,295, No. 9, 527–530 (1982). · Zbl 0512.28009
[1057] B. Ricceri, ”Sur les multifonctions à graphe convexe,” C. R. Acad. Sci. Paris, Ser. I Math.,299, No. 15, 739–740 (1984). · Zbl 0561.54013
[1058] B. Ricceri, ”On nonautonomous differential equations in Banach spaces,” Bull. Polish Acad. Sci. Math.,32, No. 9–10, 561–566 (1984). · Zbl 0564.34066
[1059] B. Ricceri, ”Fixed points of lower semicontinuous multifunctions and applications: alternative and minimax theorems,” Rend. Accad. Naz. Sci. XL,9, No. 1, 331–337 (1985). · Zbl 0586.47058
[1060] B. Ricceri, ”Un théorème d’existence pour les inéquations variationnelles,” C. R. Acad. Sci. Paris, Ser. I Math.,301, No. 19, 885–888 (1985). · Zbl 0606.49006
[1061] D. Rinne, ”Characterizing cluster sets of real functions,” Real Anal. Exchange,5, No. 1, 164–179 (1979–80). · Zbl 0444.26004
[1062] S. M. Robinson, ”Some continuity properties of polyhedral multifunctions,” Math. Programming Study,14, 206–214 (1981). · Zbl 0449.90090
[1063] S. M. Robinson, ”Inverse sums of monotone operators,” in: Game Theory and Mathematical Economics, North-Holland, Amsterdam (1981), pp. 449–457.
[1064] R. T. Rockafellar, ”The Theory of Subgradients and Its Applications to Problems of Optimization. Convex and Nonconvex Functions, Heldermann Verlag, Berlin (1981). · Zbl 0462.90052
[1065] R. T. Rockafellar, ”Lipschitzian properties of multifunctions,” Nonlinear Anal.,9, No. 8, 867–885 (1985). · Zbl 0573.54011
[1066] S. Rolewicz, ”On paraconvex multifunctions,” in: Third Symposium on Operations Research (Univ. Mannheim, Mannheim, 1978), Section I, Operations Res. Verfahren,31, 539–546 (1979). · Zbl 0403.49021
[1067] S. Rolewicz, ”Multifunctions and optimization,” in: Game Theory and Related Topics (Proc. Sem., Bonn and Hagen, 1978), North-Holland, Amsterdam (1979), pp. 203–206.
[1068] S. Rolewicz, ”On graph {\(\gamma\)}-paraconvex multifunctions,” in: Special Topics of Applied Mathematics (Proc. Sem., Bonn, 1979), North-Holland, Amsterdam (1980), pp. 213–217. · Zbl 0434.54009
[1069] S. Rolewicz, ”On optimal problems described by graph {\(\gamma\)}-paraconvex multifunctions,” in: Functional Differential Systems and Related Topics (Proc. First Internat. Conf., Blazejewko, 1979), Higher College Engrg., Zielona Gora (1980), pp. 280–283.
[1070] S. Rolewicz, ”On conditions warranting {\(\Phi\)}2-subdifferentiability,” Math. Programming Study,14, 215–224 (1981). · Zbl 0444.90106
[1071] W. Romisch, ”Convergence of measurable selections and measurable solutions in stochastic optimization,” Preprint Humboldt-Univ. Berlin, Sekt. Math., No. 99 (1985).
[1072] I. Rosca and M. Sofonea, ”A variational method in the study of the equationAu + (Ku) f,” An. Univ. Bucuresti Mat.,34, 52–60 (1985).
[1073] I. A. Rus, ”Some general fixed point theorems for multivalued mappings in complete metric space,” in: Proc, of the Third Colloquium on Operations Research (Cluj-Napoca, 1978), Univ. BabeÇ-Bolyai, Cluj-Napoca (1979), pp. 240–248.
[1074] I. A. Rus, ”Generalized contractions,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., No. 3, 1–130 (1983).
[1075] I. A. Rus, ”Fixed and strict fixed points for multivalued mappings,” Preprint BabeÇBolyai Univ. Fac. Math. Res. Sem., No. 3, 77–82 (1985).
[1076] L. Rybinski, ”On Caratheodory type selections,” Fund. Math.,125, No. 3, 187–193 (1985).
[1077] L. Rybinski, ”Multivalued contraction with parameter,” Ann. Polon. Math.,45, No. 3, 275–282 (1985). · Zbl 0604.47035
[1078] B. Rzepecki, ”Some fixed point theorems for multivalued mappings,” Comment. Math. Univ. Carolin.,24, No. 4, 741–745 (1983). · Zbl 0549.47029
[1079] B. Rzepecki, ”Addendum to the paper ’Some fixed point theorems for multivalued mappings’,” Comment. Math. Univ. Carolin.,25, No. 2, 283–286 (1984). · Zbl 0588.47069
[1080] B. Rzepecki, ”A fixed point theorem for multivalued mappings,” Bull. Polish Acad. Sci. Math.,32, No. 7–8, 479–483 (1984). · Zbl 0588.47065
[1081] B. Rzepecki, ”A coincidence theorem for multivalued mappings in Banach spaces,” Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,14, No. 1, 25–34 (1984). · Zbl 0588.47067
[1082] B. Rzepecki, ”A fixed point theorem of Krasnoselskii type for multivalued mappings,” Demonstratio Math.,17, No. 3, 767–776 (1984). · Zbl 0588.47068
[1083] B. Rzepecki, ”A fixed point theorem for multivalued mappings in uniformly convex Banach spaces,” Math. Japon.,30, No. 4, 523–525 (1985). · Zbl 0588.47066
[1084] T. Rzezuchowski, ”Scorza-Dragoni type theorem for upper semicontinuous multivalued functions,” Bull. Acad. Polon. Sci. Ser. Sci. Math.,28, No. 1–2, 61–66 (1980). · Zbl 0459.28007
[1085] T. Rzezuchowski, ”On the set where all the solutions satisfy a differential inclusion,” in: Qualitative Theory of Differential Equations, Vol. II (Szeged, 1979), North-Holland, Amsterdam (1981), pp. 903–913.
[1086] Al. SabadiÇ, ”Limit and analytic continuity of multifunctions. I,” Bul. Inst. Politehn. IaÇi Sect. I,26, No. 3–4, 75–79 (1980).
[1087] Al. SabadÎÇ, ”Limit and analytic continuity of multifunctions. II,” Bul. Inst. Politehn. IaÇi Sect. I,22, No. 1–2, 49–54 (1981).
[1088] Al. SabadiÇ, ”Suites et series de multi-applications analitiquement convergentes,” An. stunt. Univ. ” Al. I. Cuza”, IaÇi, Sect. Ia Mat.,28, No. 2, Suppl., 31–36 (1982).
[1089] Al. SabadiÇ, ”Certaines classes de suites de multi-applications. Proprietes de la convergence uniformement analytique,” Bul. Inst. Politehn. IaÇi, Sect. I, Suppl., 105–108 (1985)
[1090] P. E. Sacks, ”Continuity of solutions of a singular parabolic equation,” Nonlinear Anal.,7, No. 4, 387–409 (1983). · Zbl 0511.35052
[1091] D. Sahani and R. K. Bose, ”On asymptotic centres and fixed point theorems for set-valued nonexpansive mappings,” Indian J. Pure Appl. Math.,15, No. 9, 991–997 (1984). · Zbl 0576.47032
[1092] J. Saint Raymond, ”Points fixes des multiapplications à valeurs convexes,” C. R. Acad. Sci. Paris, Ser. I. Math.,298, No. 4, 71–74 (1984). · Zbl 0561.54042
[1093] G. Salinetti and R. J.-B. Wets, ”On the convergence of closed-valued measurable multi-functions,” Trans. Am. Math. Soc.,266, No. 1, 275–289 (1981). · Zbl 0501.28005
[1094] S. K. Samanta, ”Fixed point theorems in a Banach space satisfying Opial’s condition,” J. Indian Math. Soc.,45, No. 1–4, 251–258 (1981 (1984)). · Zbl 0636.47046
[1095] S. Sasaki, ”On nonlinear hyperbolic evolution equations with unilateral conditions dependent on time,” Proc. Jpn. Acad.,A59, No. 2, 59–62 (1983). · Zbl 0594.35066
[1096] M. Sassetti and A. Tarsia, ”Su un’equazione differenziale ordinaria della teoria della plasticita,” Boll. Un. Mat. Ital.,4B, No. 2, 391–412 (1985).
[1097] R. Scarparo, ”Un teorema sobre la existencia de seleccion simultanea continua,” Math. Notae, No. 27, 139–144 (1979–80).
[1098] E. Schechter, ”Perturbations of regularizing maximal monotone operators,” Israel J. Math.,43, No. 1, 49–61 (1982). · Zbl 0516.34060
[1099] J. Schinas and M. Boudourides, ”Higher order differentiability of multifunctions,” Nonlinear Anal.,5, No. 5, 506–516 (1981). · Zbl 0466.46048
[1100] J. Schinas and A. Meimaridou, ”Some perturbation results on multivalued difference equations,” Publ. Inst. Math. (Beograd),32 (46), 143–147 (1982). · Zbl 0515.39006
[1101] J. Schinas and A. Meimaridou, ”On the application of Lyapunov’s second method to multivalued difference equations,” Serdica,9, No. 3, 321–325 (1983). · Zbl 0533.39002
[1102] H. Schirmer, ”Conditions for the uniqueness of the fixed point in Kakutani’s theorem,” Can. Math. Bull.,24, No. 3, 351–357 (1981). · Zbl 0468.54036
[1103] H. Schirmer, ”Fixed points, antipodal points and coincidences ofn-acyclic valued multifunctions,” Contemp. Math.,21, 207–212 (1983). · Zbl 0528.55004
[1104] H. Schirmer, ”Fix-finite approximation ofn-valued multifunctions,” Fund. Math.,121, No. 1, 73–80 (1984). · Zbl 0537.55005
[1105] H. Schirmer, ”An index and a Nielsen number forn-valued multifunction,” Fund. Math.,124, No. 3, 207–219 (1984). · Zbl 0543.55003
[1106] H. Schirmer, ”A minimum theorem for n-valued multifunctions,” Fund. Math.,126, No. 1, 83–92 (1985). · Zbl 0609.55001
[1107] H.-J. Schmidt, ”Hyperspaces of quotient and subspaces. I. Hausdorff topological spaces. II. Metrizable spaces,” Math. Nachr.,104, 271–280, 281–288 (1981). · Zbl 0523.54007
[1108] R. Schultz, ”An approach to stability in convex programming using the topological degree of set-valued mappings,” Seminarberichte No. 50/2, Humboldt-Univ., Berlin (1983), pp. 317–326. · Zbl 0522.90085
[1109] S. W. Seah, ”Existence of solutions and asymptotic equilibrium of multivalued differential systems,” J. Math. Anal. Appl.,89, No. 2, 648–663 (1982). · Zbl 0492.34004
[1110] S. W. Seah, ”Bounded solutions of multivalued differential systems,” Houston J. Math.,8, No. 4, 587–598 (1982). · Zbl 0555.34010
[1111] S. W. Seah, ”Asymptotic relationship between solutions of ordinary and multivalued differential systems,” Period. Math. Hung.,15, No. 2, 157–164 (1984). · Zbl 0567.34043
[1112] V. Seda, ”A class of differential equations similar to linear equations,” Math. Slovaca,30, No. 4, 433–441 (1980). · Zbl 0442.34009
[1113] W. Segiet, ”Nonsymmetric Borsuk-Ulam theorem for multivalued mappings,” Bull. Polish Acad. Sci. Math.,32, No. 12, 113–119 (1984). · Zbl 0599.54023
[1114] V. M. Sehgal and S. P. Singh, ”A theorem on the minimization of a condensing multifunction and fixed points,” J. Math. Anal. Appl.,107, No. 1, 96–102 (1985). · Zbl 0602.47039
[1115] V. M. Sehgal and S. P. Singh, ”On random approximations and a random fixed point theorem for set valued mappings,” Proc. Am. Math. Soc.,95, No. 1, 91–94 (1985). · Zbl 0607.47057
[1116] V. M. Sehgal, S. P. Singh, and D. Watson, ”A coincidence theorem for topological vector spaces,” Indian J. Pure Appl. Math.,14, No. 5, 565–566 (1983). · Zbl 0545.47036
[1117] V. M. Sehgal, S. P. Singh, and D. Watson, ”A coincidence theorem for topological vector spaces,” Contemp. Math.,21, 213–214 (1983). · Zbl 0527.47038
[1118] I. Serb, ”On the multivalued metric projection in normed vector spaces,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., 1980, No. 1; Sem. Funct. Anal. and Numer. Meth. 60–75.
[1119] I. Serb, ”A normed space admitting countable multivalued metric projections,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Sem., 1981, No. 4; Sem. Funct. Anal. and Numer. Meth., 155–158.
[1120] I. Serb, ”On the multivalued metric projection in normed vector spaces. II,” Anal, Numer. Theor. Approx.,11, No. 1–2, 155–166 (1982).
[1121] H. Serizawa, ”m-Browder-acretiveness of a quasi linear differential operator,” Houston J. Math.,10, No. 1, 147–152 (1984). · Zbl 0537.47029
[1122] S. Sessa, M. S. Khan, and M. Imdad, ”A common fixed point theorem with a weak commutativity condition,” Glas. Mat., Ser. III,21, No. 1, 225–235 (1986). · Zbl 0603.54046
[1123] M.-H. Shih and K.-K. Tan, ”Generalized quasi-variational inequalities in locally convex topological vector spaces,” J. Math. Anal. Appl.,108, No. 2, 333–343 (1985). · Zbl 0656.49003
[1124] Shih Shu-Chung, ”Semi-continuites generiques de multiapplications,” C. R. Acad. Sci. Paris, Ser. I Math.,293, No. 1, 27–29 (1981). · Zbl 0472.54010
[1125] B. Shitovitz, ”A note on the equivalence between two cones generated by a correspon- dence,” Econom. Lett.,12, No. 3–4, 295–297 (1983). · Zbl 1273.91182
[1126] R. E. Showalter, ”Singular nonlinear evolution equations,” Rocky Mountain J. Math.,10, No. 3, 499–507 (1980). · Zbl 0462.47048
[1127] H. W. Siegberg and G. Skordev, ”Fixed point index and chain approximations,” Pac. J. Math.,102, No. 2, 455–486 (1982). · Zbl 0458.55001
[1128] H. Sies, ”Topological degree and Sperner’s lemma,” Fund. Math.,118, No. 2, 135–149 (1983). · Zbl 0549.55003
[1129] K. K. Siggini, ”Sur la compacité étroite des multiapplications de Radon,” C. R. Acad. Sci. Paris, Ser. I Math.,296, No. 2, 109–112 (1983). · Zbl 0532.28011
[1130] S. Simons, ”Cyclical coincidences of multivalued maps,” J. Math. Soc. Jpn.,38, No. 3, 515–525 (1986). · Zbl 0616.47044
[1131] K. L. Singh and J. H. M. Whitfield, ”Fixed points for contractive type multivalued mappings,” Math. Japon.,27, No. 1, 117–124 (1982). · Zbl 0488.54039
[1132] Z. Skoczylas, ”Category theorems for the family of continuous multifunctions,” Bull. Polish Acad. Sci. Math.,32, No. 1–2, 89–94 (1984). · Zbl 0581.54012
[1133] Z. Skoczylas, ”A density result for a family of continuous multifunctions,” Discuss. Math.,7, 197–200 (1985). · Zbl 0596.54016
[1134] G. S. Skordev, ”Fixed point index for open sets in euclidean spaces,” Fund. Math.,121, No. 1, 41–58 (1984). · Zbl 0561.55001
[1135] W. Slezak, ”Some counterexamples in multifunction theory,” Real Anal. Exchange,8, No. 2, 494–501 (1982–83). · Zbl 0527.54014
[1136] W. Slezak, ”Ceder’s conjecture on Baire 1 selections is not true,” Real Anal. Exchange,9, No. 2, 502–507 (1983–84).
[1137] W. Slezak, ”Sharpness of some graph conditioned theorems on Borel 1 selectors,” Real Anal. Exchange,10, No. 2, 324–331 (1984–85). · Zbl 0582.54013
[1138] Z. Slodkowski, ”Analytic set-valued functions and spectra,” Math. Ann.,256, No. 3, 363–386 (1981). · Zbl 0452.46028
[1139] Z. Slodkowski, ”An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra,” Trans. Am. Math. Soc.,294, No. 1, 367–377 (1986). · Zbl 0594.32008
[1140] A. Smajdor, ”Measurable semigroups of multivalued functions,” in: Colloq. Internat. CNRS, No. 332, CNRS, Paris (1982), pp. 67–68. · Zbl 0528.54015
[1141] A. Smajdor, Iterations of Multivalued Functions, Univ. Slaski, Katowice (1985). · Zbl 0561.39006
[1142] A. Smajdor and W. Smajdor, ”Multivalued solutions of a functional equation,” Ann. Polon. Math.,41, No. 2, 89–97 (1983). · Zbl 0577.39013
[1143] W. Smajdor, ”Multivalued solutions of a linear functional equation,” Ann. Polon. Math.,45, No. 3, 253–259 (1985). · Zbl 0592.47053
[1144] M. A. Smith, ”On the norms of metric projections,” J. Approx. Theory,31, No. 3, 224–229 (1981). · Zbl 0477.46022
[1145] M. B. Smyth, ”Power domains and predicate transformers: a topological view,” Lecture Notes in Computer Science, No. 154, 662–675 (1983). · Zbl 0533.68018
[1146] M. Sofonea, ”Une méthode variationelle pour une classe d’équations non linéaires dans les éspaces de Hilbert,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,30, No. 1, 47–55 (1986). · Zbl 0594.47051
[1147] M. Sommer, ”Characterization of continuous selections of the metric projection for a class of weak Chebyshev spaces,” SIAM J. Math. Anal.,13, No. 2, 280–294 (1982). · Zbl 0492.41040
[1148] W. Sosulski, ”Some remarks concerning of Filippov-Castaing theorem,” Discuss. Math.,5, 109–110 (1982). · Zbl 0517.28004
[1149] W. Sosulski, ”Continuous dependence of a solution set for generalized differential equations of the hyperbolic type,” Discuss. Math.,6, 149–152 (1983). · Zbl 0559.35048
[1150] W. Sosulski, ”Existence theorem for generalized functional-differential equations of hyperbolic type,” Comment. Math. Prace Mat.,25, No. 1, 149–152 (1985). · Zbl 0582.45032
[1151] W. Sosulski, ”Compactness and upper semicontinuity of solution set of functional-differential equations of hyperbolic type,” Comment. Math. Prace Mat.,21, No. 2, 359–362 (1985). · Zbl 0614.35061
[1152] B. S. Spahn, ”A representation theorem for compact-valued multifunctions,” Fund. Math.,117, No. 3, 209–215 (1983). · Zbl 0573.28015
[1153] A. Spakowski, ”On De Blasi’s differentiation theory for multifunctions,” Casopis Pest. Mat.,110, No. 3, 270–273 (1985). · Zbl 0583.46036
[1154] A. Spakowski, ”On approximation by step multifunctions,” Comment. Math. Prace Mat.,25, No. 2, 363–371 (1985). · Zbl 0604.41020
[1155] M. Srebrny, ”Measurable selectors of PCA multifunctions with applications,” Mem. Am. Math. Soc., No. 52 (1984). · Zbl 0567.28005
[1156] V. V. Srivatsa, ”Existence of measurable selectors and parametrizations forG {\(\delta\)}-valued multifunctions,” Fund. Math.,122, No. 1, 23–32 (1984). · Zbl 0596.54018
[1157] V. Staicu, ”Multifunctions in parametric linear programming,” Stud. Cerc. Mat.,37, No. 6, 572–578 (1985). · Zbl 0583.90095
[1158] G. Stefani and P. Zecca, ”Multivalued differential equations on manifolds with application to control theory,” Illinois J. Math.,24, No. 4, 560–575 (1980). · Zbl 0471.58020
[1159] A. Sterna-Karwat, ”Semicontinuity of multifunctions connected with optimization with respect to cones,” J. Austral. Math. Soc.,A40, No. 2, 183–193 (1986). · Zbl 0594.49006
[1160] M. B. Suryanarayana, ”Upper semicontinuity of set-valued functions,” J. Optim. Theory Appl.,41, No. 1, 185–211 (1983). · Zbl 0496.54015
[1161] A. Suszycki, ”Retracts and homotopies for multimaps,” Fund. Math.,115, No. 1, 9–26 (1983). · Zbl 0529.55013
[1162] T. Szilágyi, ”A characterization of complete metric spaces and other remarks to a theorem of Ekeland,”27, 103–106 (1984(1985)). · Zbl 0596.54025
[1163] W. Takahashi, ”Fixed point, minimax, and Hahn-Banach theorems,” in: Nonlinear Functional Analysis and Its Applications, Part 2, (Berkeley, California, 1983), Proc. Sympos. Pure Math., Vol. 45, Part 2, Am. Math. Soc., Providence (1986), pp. 419–427.
[1164] P. Tallos, ”Continuous dependence on Nash-equilibrium trajectories of multivalued differential equations on the initial conditions,” Ann. Univ. Sci. Budapest. Eotvos, Sect. Math.,24, 217–226 (1981). · Zbl 0488.34014
[1165] Kok-Keong Tan, ”Comparison theorems on minimax inequalities, variational inequalities, and fixed point theorems,” J. London Math. Soc.,28, No. 3, 555–562 (1983). · Zbl 0497.49010
[1166] H. Tanabe, ”Differentiability of solutions of some unilateral problem of parabolic type,” J. Math. Soc. Jpn.,33, No. 3, 367–403 (1981). · Zbl 0469.47049
[1167] A. Tarsi Santolini, ”Soluzione globale di un problema di controllo per un sistema iperbolico,” Riv. Mat. Univ. Parma,6, 239–252 (1980). · Zbl 0495.49003
[1168] K. Taubert, ”Converging multistep methods for initial value problems involving multivalued maps,” Computing,22, No. 2, 123–136 (1981). · Zbl 0465.65038
[1169] K. Taubert, ”Galerkin Verfahren bei erzwungenen Schwingungen mit trockener Reibung,” Z. Angew. Math. Mech.,65, No. 5, T368-T369 (1985). · Zbl 0578.65083
[1170] G. Teodoru, ”Le problème de picard pour une équation aux derivées partielles multivoque,” Preprint BabeÇ-Bolyai Univ. Fac. Math. Res. Semin., 84–6, 193–198 (1984).
[1171] G. Teodoru, ”Le problème de Cauchy pour une équation hyperbolique multivoque,” Bul. Inst. Politehn. IaÇi, Sec. I, Suppl., 141–146 (1985). · Zbl 0603.34010
[1172] G. Terzis, ”Integral equivalence of multivalued differential systems,” Houston J. Math.,12, No. 1, 131–143 (1986) · Zbl 0603.34012
[1173] L. Tesfatsion, ”Pure strategy Nash equilibrium points and the Lefschetz fixed point theorem,” Internat. J. Game Theory,12, No. 3, 181–191 (1983). · Zbl 0522.90107
[1174] L. Thibault, ”On generalized differentials and subdifferentials of Lipschitz vectorvalued functions,” Nonlinear Anal.,6, No. 10, 1037–1053 (1982). · Zbl 0492.46036
[1175] L. Thibault, ”Tangent cones and quasi-interiorly tangent cones to multifunctions,” Trans. Am. Math. Soc.,277, No. 2, 601–621 (1983). · Zbl 0527.90088
[1176] L. Thibault, ”Continuity of measurable convex multifunctions,” Publ. Math. Univ. de Pau et des Pays de l’Adour, V/1–V/9 (1983).
[1177] L. Thibault, ”Continuity of measurable convex multifunctions,” Lecture Notes in Math., No. 1091, 216–224 (1984).
[1178] J. S. Thorp and B. R. Barmish, ”On guaranteed stability of uncertain linear systems via linear control,” J. Optim. Theory Appl.,35, No. 4, 559–579 (1981). · Zbl 0446.93040
[1179] D. Tiba, ”Necessary conditions for some nonlinear control problems,” in: Differential Equations and Applications, Part II, Tech. Univ., Ruse (1982), pp. 729–734.
[1180] D. Tiba, ”Optimality conditions for nonlinear distributed control problems,” in: Proc. 22nd IEEE Conf. Decis. and Contr. (San Antonio, Texas, 1983), Vol. 3, New York (1983), pp. 1251–1252.
[1181] D. Tiba, ”Quelques remarques sur le controle de la corde vibrante avec obstacle,” C. R. Acad. Sci. Paris, Ser. I Math.,299, No. 13, 615–617 (1984). · Zbl 0578.49004
[1182] D. Tiba, ”Optimality conditions for distributed control problems with nonlinear state equation,” SIAM J. Control Optim.,23, No. 1, 85–110 (1985). · Zbl 0561.49017
[1183] R. M. Torrejon, ”Remarks on nonlinear functional equations,” Nonlinear Anal.,6, No. 3, 197–207 (1982). · Zbl 0506.47035
[1184] R. M. Torrejon, ”Existence theorems for nonlinear noncoercive operator equations,” J. Math. Anal. Appl.,92, No. 1, 180–206 (1983). · Zbl 0518.47041
[1185] R. Torrejon, ”Some remarks on nonlinear functional equations,” Contemp. Math.,18, 217–246 (1983). · Zbl 0518.47042
[1186] M. Turinici, ”Multivalued contractions and applications to functional differential equations,” Acta Math. Acad. Sci. Hungar.,37, No. 1–3, 147–151 (1981). · Zbl 0424.54006
[1187] M. Turinici, ”Invariant polygonal domains for multivalued functional-differential equations,” Rev. Un. Mat. Argentina,30, No. 2, 85–92 (1981/82). · Zbl 0547.34059
[1188] M. Turinici, ”Multivalued functional-differential equations with completely transformed argument,” Mathematica (Cluj),26 (49), No. 1, 85–92 (1984). · Zbl 0558.34053
[1189] M. Turinici, ”A fixed point result of Seghal-Smithson type,” Comment. Math. Univ. Carolin.,26, No. 2, 221–232 (1985). · Zbl 0586.54050
[1190] J. Turo, ”A random fixed point theorem for multivalued mappings,” Mat. Vesnik,35, No. 4, 433–438 (1983). · Zbl 0606.54033
[1191] M. Valadier, ”La multi-application medianes conditionnelles,” Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,67, No. 3, 279–282 (1984). · Zbl 0572.60013
[1192] R. Vasudevan and C. K. Goel, ”Bitopological hyperspaces equipped with upper semifinite and lower semifinite topologies,” Mat. Vesnik,5, No. 1, 119–128 (1981). · Zbl 0499.54025
[1193] L. Veron, ”Some remarks on the convergence of approximate solutions of nonlinear evolution equations in Hilbert spaces,” Math. Comp.,39, No. 160, 325–337 (1982). · Zbl 0503.47051
[1194] P. Vetro, ”Una osservazione sulle selezioni continue,” Rend. Circ. Mat. Palermo,32, No. 1, 139–144 (1983). · Zbl 0541.54024
[1195] P. Vetro, ”Ordinarily approximately continuous selections,” Rend. Circ. Mat. Palermo,32, No. 3, 415–420 (1983). · Zbl 0544.26010
[1196] R. B. Vinter, ”Dynamic programmingfor optimal control problems with terminal constraints,” Lect. Notes Math., No. 1119, 190–202 (1985).
[1197] M. Volle, ”Convergence en niveaux et en epigraphes,” C. R. Acad. Sci. Paris, Ser. I Math.,299, No. 8, 295–298 (1984). · Zbl 0566.49004
[1198] C. S. Vora, ”Some applications of the fixed point theorems for compact weighted maps,” Math. Student,46, No. 1, 87–99 (1978). · Zbl 0537.55002
[1199] I. I. Vrabie, ”Compactness methods and flow-invariance for perturbed nonlinear semi-groups,” An. Stiint. Univ. ” Al. I. Cuza” IaÇi Sect. Ia Mat.,27, No. 1, 117–125 (1981).
[1200] I. I. Vrabie, ”Une méthode de compacité pour une classe d’équations d’évolution non linéaires,” C R. Acad. Sci. Paris, Ser. I Math.,293, No. 2, 151–153 (1981). · Zbl 0484.34042
[1201] I. I. Vrabie, ”An existence result for a class of nonlinear evolution equations in Banach spaces,” Nonlinear Anal.,6, No. 7, 711–722 (1982). · Zbl 0493.34050
[1202] I. I. Vrabie, ”Upper semicontinuous perturbations of accretive operators,” Bul. Inst. Politehn. IaÇi, Sect. I, Suppl., 89–90 (1985). · Zbl 0594.47047
[1203] I. I. Vrabie, ”Compact perturbations of accretive operators in Hilbert spaces,” Bul. Inst. Politehn. IaÇi, Sect. I, Suppl., 83–84 (1985). · Zbl 0594.47046
[1204] I. I. Vrabie, ”A compactness criterion inC(O, T;X) for subsets of solutions of nonlinear evolution equations governed by accretive operators,” Rend. Sem. Mat. Univ. Politec. Torino,43, No. 1, 149–157 (1985). · Zbl 0612.34059
[1205] J. Wachowiak, ”Integrability condition for the subderivative of a stochastic process,” Funct. Approx. Comment. Math., No. 9, 71–74 (1980). · Zbl 0456.60041
[1206] H. Y. Wan, Jr., ”Causally indeterminate models via multivalued differential equations,” in: Bifurcation Theory and Applications in Scientific Disciplines, Ann. New York Acad. Sci., Vol. 316, New York Acad. Sci., New York (1979), pp. 530–544.
[1207] M. Watanabe, ”On semigroups generated bym-accretive operators in a strict sense,” PAMS,96, No. 1, 43–49 (1986). · Zbl 0594.47054
[1208] R. Wegrzyk, ”Fixed-point theorems for multivalued functions and their applications to functional equations,” Dissertationes Math. (Rozprawy Mat.), No. 201 (1982). · Zbl 0521.54034
[1209] G. Wenzel, Zur Existenz und. Stabilitat von Losungen gewisser impliziter Differentialinklusionen zur Beschreibung des dynamischer Gleichgewichts in abstrakten Netzwerken. Diss. Doktorgrad. Naturwiss. Fak. Friedrich-Alexander Univ., Erlangen-Nurnberg (1982).
[1210] G. Wenzel, ”Existence of solutions for a class of implicit differential inclusions: a constructive proof,” Arch. Math. (Basel),47, 121–128 (1986). · Zbl 0608.34004
[1211] A. Wieczorek, ”Fixed points of multifunctions in general convexity spaces,” Preprint IPI PAN, No. 508 (1983). · Zbl 0519.47036
[1212] M. Wilhelm, ”Nearly lower semicontinuity and its applications,” General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981), Heldermann, Berlin (1983), pp. 692–698.
[1213] N. H. Williams, ”Set mapping defined on pairs,” J. Austral. Math. Soc.,A30, No. 3, 356–365 (1981). · Zbl 0468.04007
[1214] F. Williamson, ”Approximation methods for multivalued differential equations in Hilbert spaces,” J. Differential Equations,52, No. 2, 234–244 (1984). · Zbl 0498.34047
[1215] J. Willoper, ”KomplementaritÄtsprobleme für Punkt-Menge-Abbildungen,” Optimization,”16, No. 2, 207–218 (1985). · Zbl 0568.90097
[1216] J. Wolnicka, ”On the semicontinuity of mappings of topological spaces into the family of closed sets,” Zeszty Nauk. Politech. Lodz. Mat., No. 16, 99–105 (1983). · Zbl 0596.54017
[1217] Sek Wui Seah, ”Asymptotic equivalence of multivalued differential systems,” Boll. Un. Mat. Ital.,17B, No. 3, 1124–1145 (1980). · Zbl 0458.34009
[1218] K. Yanagi, ”On some fixed point theorems for multivalued mappings,” Pac. J. Math.,87, No. 1, 233–240 (1980). · Zbl 0408.47042
[1219] M. Yarom, ”Dynamic systems of differential inclusions for the bargaining sets,” Internat. J. Game Theory,14, No. 1, 51–61 (1985). · Zbl 0577.90093
[1220] Chi-Lin Yen, ”Fixed points of nonexpansive condensing multivalued mappings on metric spaces,” Proc. Am. Math. Soc.,84, No. 3, 415–419 (1982). · Zbl 0505.54042
[1221] D. Zagrodny, ”Fixed point theorem for multifunctions,” Demonstratio Math.,17, No. 4, 975–980 (1984). · Zbl 0598.47065
[1222] L. Zajicek, ”Differentiability of the distance function and points of multivaluedness of the metric projection in Banach space,” Czechoslovak Math. J.,33, No. 2, 292–308 (1983). · Zbl 0527.41028
[1223] E. H. Zarantonello, ”Cyclical monotonicity of maximal monotone step operators,” Bol. Soc: Brasil. Mat.,13, No. 1, 85–91 (1982). · Zbl 0576.47029
[1224] L. S. Zaremba, ”Existence of value in generalized pursuit-evasion games,” SIAM J. Control Optim.,22, No. 6, 894–901 (1984). · Zbl 0592.90109
[1225] L. S. Zaremba, ”Existence theorems for games of survival,” J. Optim. Theory Appl.,48, No. 2, 341–346 (1986). · Zbl 0559.90105
[1226] P. Zecca, ”On the exponential stability of set-valued differential equations,” Illinois J. Math.,26, No. 1, 112–120 (1982). · Zbl 0475.93053
[1227] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer, New York (1986). · Zbl 0583.47050
[1228] Yi Chun Zhao, ”On the topological degree for the sum of maximal monotone operator and generalized pseudomonotone operator,” Chinese Ann. Math.,B4, No. 2, 241–253 (1983). · Zbl 0506.47045
[1229] Zhao Yichun, ”On a surjectivity for the sum of two mappings of monotone type,” Chinese Ann. Math.,B4, No. 4, 471–480 (1985). · Zbl 0605.47050
[1230] N. V. Zhivkov, ”Continuity and nonmultivaluedness properties of metric projections and antiprojections,” Serdica,8, No. 4, 378–385 (1982). · Zbl 0512.41030
[1231] Ji Sheng Zhu, ”On the continuity of set-valued maps,” Chinese Ann. Math.,A5, No. 6, 733–737 (1984). · Zbl 0538.47005
[1232] Qi-Ji Zhu, ”Single-valued representation of absolutely continuous set-valued mappings,” Kexue Tongbao (English edition),31, No. 7, 443–446 (1986). · Zbl 0603.54019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.