×

Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles. (Computation of eddy-currents and Lorentz forces in a system of moving conductors). (French) Zbl 0673.65084

This paper introduces two methods for the computation of Lorentz forces, magnetic fields and Foucault currents in a system of rigid conductors and permanent magnets or electromagnets. Both methods are variational formulations. The first involves the magnetic field H and the current density J whereas the second involves the electric field E and \(B=\mu H\). The variational equations are discretized using boundary operators and adapted finite elements. The adaptions involve edges and faces as the basic elements rather than nodes. A duality between the two formulations is discussed.
Reviewer: B.Burrows

MSC:

65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
18A25 Functor categories, comma categories

Software:

TRIFOU
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] S. V. BOGATYREV, V. V. STRYGIN, < Stability of stationary motions of a conducting solid about the center of mass in a magnetic field >, Izv. AN SSSR, Mekhanika Tverdogo Tela, 21, 5 (1986), pp. 30-35 (trad. Allerton Press).
[2] A. BOSSAVIT, < Eddy-currents in a System of moving conductors >, in The Mechanical Behavior of Electromagnetic Solid Continua (G. A. Maugin,ed.) North-Holland (Amsterdam), 1984, pp. 345-350. Zbl0551.73094 · Zbl 0551.73094
[3] A. BOSSAVIT, < Mixed finite elements and the complex of Whitney forms >, in The Mathematics of Finite Elements and Applications VI (J. R. Whiteman, ed.) Acad. Press (London), 1988. Zbl0692.65053 MR956893 · Zbl 0692.65053
[4] A. BOSSAVIT, J. C. VÉRITÉ, < The < Trifou > code : Solving the 3-D Eddy Currents Problem by Using h as State Variable >, IEEE Trans., MAG-19, 6 (1983), pp. 2465-70.
[5] A. BOSSAVIT, J. C. VÉRITÉ, < Modélisation d’une machine sans fer avec le code < Trifou > >, Revue Générale de l’Électricité, 3 (1985), pp. 227-32.
[6] C. P. BRITCHER, P. N. FORTESCUE, G. A. ALLCOCK, M. J. GOODYER, < Investigation of Design Philosophies and Features Applicable to Large Magnetic Suspension and Balance Systems >, NASA CR-162433 (November 1979).
[7] M. CESSENAT, < Chap. 9 (Exemples en électromagnétisme et en physique quantique) >, in Analyse mathématique et calcul numérique pour les sciences et les techniques (R. Dautray, J. L. Lions, eds.), Masson (Paris), 1985.
[8] D. CHU, F. C. MOON, < Dynamic instabilities in magnetically levitated models >, J. Appl Phys., 54, 3 (1983), pp. 1619-25.
[9] A. DAMLAMIAN, Homogenization for Eddy Currents, Delft Progress Report, 6 (1981), pp. 268-75. Zbl0483.35004 · Zbl 0483.35004
[10] G. DEVELEY et coll., < Lévitation électromagnétique d’une sphère solide conductrice >, L’onde électrique, 56, 4 (1976), pp. 210-13.
[11] R. M. FANO, L. J. CHU, R. B. ADLER, Electromagnetic Fields, Energy, and Forces, Wiley (London), 1960. Zbl0098.18105 MR118274 · Zbl 0098.18105
[12] C. FLUERASU, < The use of transient parameters in the study of electromagnetic forming >, Rev. Roum. Sci. Techn. - Electrotech. et Energ. 14, 4 (1969), pp. 565-85.
[13] V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. 749, Springer (Berlin), 1979. Zbl0413.65081 MR548867 · Zbl 0413.65081
[14] E. HABERMANN, Y. DESTOMBES, < Le palier magnétique actif: principe, caratéristiques, applications >, Revue française de Mécanique, 1 (1985), pp. 51-56.
[15] S. HAMMOND, < A short modern review of fundamental electromagnetic theory >, Proc. IEEE, 101, Part I, 130 (1954), pp. 147-66.
[16] S. ISKIERKA, < Analysis of an induction bearing by the element method >, Archiv für Elecktrotechnik, 67 (1984), pp. 375-80.
[17] A. I. KOBRIN, Yu G. MARTYNENKO, < Dvizhenie provodyashchego tverdogo tela okolo tsentra mass v medlenno izmenyayushchemsy a magnitnom pole >, DAN SSSR, 261 (1981), pp 1070-73. MR647035
[18] P. R. KOTIUGA, Hodge Decompositions and Computational Electromagnetics, These, Universite McGill (Montreal), 1984.
[19] L. LANDAU, E. LIFCHITZ, Theorie du champ, Mir (Moscou), 1969.
[20] G. A. MAUGIN, A. C. ERÏNGEN, < On the equations of the electrodynamics of deformable bodies of finite extent >, Journal de Mecanique, 16, 1 (1977), pp. 101-47. Zbl0356.73079 MR521966 · Zbl 0356.73079
[21] J. C. MAXWELL, A Treatise on Electricity and Magnetism, Clarendon Press (Oxford), 1982. Zbl1049.01022 · Zbl 1049.01022
[22] J. R. MELCHER, Continuum Electromechanics, The MIT Press (Cambridge, Mass), 1981.
[23] P. R. METHA, R. L. SWART, < Generalized Formulation for Electromagnetic Forces on Current-Carrymg Conductors >, IEEE Trans, PAS-86, 2 (1967), pp. 155-65.
[24] M. MIKULINSKY, S. SHTRIKMAN, < Optimization of an eddy-current damper >, Electric Machines and Electromechanics, 5 (1980), pp. 417-32.
[25] A. MINATO, T. TONE, K. MIYA, < Three-dimensional analysis of magnetic field distortion of ferromagnetic beam-plates by the boundary element method >, Int J. Num. Meth. Engng, 23 (1986), pp. 1201-16. Zbl0592.73114 · Zbl 0592.73114
[26] F. C. MOON, Magnetosolid Mechanics, Wiley (New York), 1984.
[27] F. C. MOON, P. J. HOLMES, < A Magnetoelastic Strange Attractor >, J. Sound Vib. 65, 2 (1979), pp. 275-96. Zbl0405.73082 · Zbl 0405.73082
[28] F. C. MOON, G. X. Li, < Chaotic Dynamics and Magneto-Mechamcal Systems > in Ref [43], pp. 41-52.
[29] [29] J. C. NEDELEC, < Mixed Fimte Elements in R3 >, Numer Math, 35 (1980), pp. 315-41. Zbl0419.65069 MR592160 · Zbl 0419.65069
[30] L. PAPAZOV, R. STANCHEVA, < Electromagnetic effects excited by magnetic loops >, Archiv fur Elektrotechnik, 69 (1986), pp. 247-53.
[31] [31] L. PAQUET, < Problemes mixtes pour le système de Maxwell >, Annales Fac Sc Toulouse, 4 (1982), pp. 103-41. Zbl0529.58038 MR687546 · Zbl 0529.58038
[32] A. PATECKI, G. SZYMANSKI, < Electrodynarmc Forces at Thin Non-Magnetic Tapes Placed Above Ferromagnetic Plates >, Archiv fur Elektrotechnik, 65 (1982) pp. 93-96.
[33] P. PFNFIELD, H. A. HAUS, Electrodynamics of Moving Media, The MIT Press (Cambridge, Mass), 1967.
[34] P. A. RAVIART, J. M. THOMAS, < A mixed finite element method for second order elliptic problems >, in Lecture Notes in Math 606, Springer (NewYork), 1977. Zbl0362.65089 MR483555 · Zbl 0362.65089
[35] R. E. ROSENSWEIG, Ferrohydrodynamics, Cambridge U P (Cambridge), 1983.
[36] J. G. TERNAN, < Equivalence of the Lorentz force and Ampere force laws in magnetostatics >, J. Appl Phys, 57, 5 (1985), pp. 1743-45.
[37] C. W TROWBRÏDGE, < Low Frequency Electromagnetic Field Computation in Three Dimensions >, Comp. Meth. Appl Mech. Engng., 52 (1985), pp. 653-74. Zbl0567.73105 · Zbl 0567.73105
[38] K. VENTAKARATNAM, D. RAMACHANDRA RAJU, < Analysis of eddy-current brakes with non-magnetic rotors >, Proc, IEEE, 124, 1 (1977), pp. 67-70.
[39] J. C. VÉRITÉ, < Calculation of Multivalued Potentials in Exterior Régions >, IEEE Trans., MAG-23, 3 (1987), pp. 1881-87.
[40] J. C. VÉRITÉ et coll., < Trifou : un code de calcul tridimensionnel des courants de Foucault >, in Actes du colloque MODELEC (La Grande Motte, 22-24 octobre 1984), Pluralis (Paris), 1984, pp. 343-58.
[41] C. VON WESTENHOLZ, Differential Forms in Mathematical Physics, North-Holland (Amsterdam), 1981. Zbl0391.58001 MR641034 · Zbl 0391.58001
[42] H. WHITNEY, Geometric Integration Theory, Princeton U. P. (Princeton), 1957. Zbl0083.28204 MR87148 · Zbl 0083.28204
[43] Y. YAMAMOTO, K. MIYA, Electromagnetomechanical Interactions in Deformable Solids and Structures (Proc. IUTAM Symposium, Tokyo, 12-17 Oct. 1986), North-Holland (Amsterdam), 1987. Zbl0631.73090 · Zbl 0631.73090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.